Sensorimotor feedback is critical to safe and effective swallowing. Because of this, sensory interventions have the potential to treat dysphagia. One such treatment may be found in capsaicin, which activates the internal branch of the superior laryngeal nerve (iSLN).
View Article and Find Full Text PDFThe function of a muscle is impacted by its line of action, activity timing and contractile characteristics when active, all of which have the potential to vary within a behavior. One function of the hyoid musculature is to move the hyoid bone during swallowing, yet we have little insight into how their lines of action and contractile characteristics might change during a swallow. We used an infant pig model to quantify the contractile characteristics of four hyoid muscles during a swallow using synchronized electromyography, fluoromicrometry and high-speed biplanar videofluoroscopy.
View Article and Find Full Text PDFInfant birth weight affects neuromotor and biomechanical swallowing performance in infant pig models. Preterm infants are generally born low birth weight and suffer from delayed development and neuromotor deficits. These deficits include critical life skills such as swallowing and breathing.
View Article and Find Full Text PDFMammalian infants must be able to integrate the acquisition, transport, and swallowing of food to effectively feed. Understanding how these processes are coordinated is critical, as they have differences in neural control and sensitivity to perturbation. Despite this, most studies of infant feeding focus on isolated processes, resulting in a limited understanding of the role of sensorimotor integration in the different processes involved in infant feeding.
View Article and Find Full Text PDFFeeding difficulties are especially prevalent in preterm infants, although the mechanisms driving these difficulties are poorly understood due to a lack of data on healthy infants. One potential mechanism of dysphagia in adults is correlated with bolus volume. Yet, whether and how bolus volume impacts swallow safety in infant feeding is unknown.
View Article and Find Full Text PDFMovements of the hyoid and thyroid are critical for feeding. These structures are often assumed to move in synchrony, despite evidence that neurologically compromised populations exhibit altered kinematics. Preterm infants are widely considered to be a neurologically compromised population and often experience feeding difficulties, yet measuring performance, and how performance matures in pediatric populations is challenging.
View Article and Find Full Text PDFAll mammals undergo weaning from milk to solid food. This process requires substantial changes to mammalian oropharyngeal function. The coordination of swallowing and respiration is a crucial component of maintaining airway function throughout feeding and matures over infant development.
View Article and Find Full Text PDFAerodigestive coordination is critical for safe feeding in mammals, and failure to do so can result in aspiration. Using an infant pig model, we analyzed the impact of recurrent laryngeal nerve (RLN) lesion on aerodigestive coordination and swallow safety at two time points prior to weaning. We used high-speed videofluoroscopy to record 23 infant pigs longitudinally at two ages (7 days, 17 days) feeding on barium milk.
View Article and Find Full Text PDFBackground: The formation of a bolus of food is critical for proper feeding function, and there is substantial variation in the size and shape of a bolus prior to a swallow. Preterm infants exhibit decreased abilities to acquire and process food, but how that relates to their bolus size and shape is unknown. Here, we test two hypotheses: (1) that bolus size and shape will differ between term and preterm infants, and (2) bolus size and shape will change longitudinally through development in both term and preterm infants.
View Article and Find Full Text PDFAll mammals must breathe and breathe continuously from birth. Similarly, all mammals, including infants, have high functional demands for feeding. However, the pathway that food takes through the pharynx interrupts respiration.
View Article and Find Full Text PDF