Autotrophic and heterotrophic picoplankton play fundamental roles in marine food webs and biogeochemical cycles. However, their growth responses have seldom been jointly assessed, including many temperate regions such as the Bay of Biscay. There, previous studies have shown their relevance in carbon fluxes.
View Article and Find Full Text PDFUsing the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6ºC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μ at the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.
View Article and Find Full Text PDFHeterotrophic bacteria play a major role in organic matter cycling in the ocean. Although the high abundances and relatively fast growth rates of coastal surface bacterioplankton make them suitable sentinels of global change, past analyses have largely overlooked this functional group. Here, time series analysis of a decade of monthly observations in temperate Atlantic coastal waters revealed strong seasonal patterns in the abundance, size and biomass of the ubiquitous flow-cytometric groups of low (LNA) and high nucleic acid (HNA) content bacteria.
View Article and Find Full Text PDFEnviron Microbiol
October 2015
Rare microbial taxa are increasingly recognized to play key ecological roles, but knowledge of their spatio-temporal dynamics is lacking. In a time-series study in coastal waters, we detected 83 bacterial lineages with significant seasonality, including environmentally relevant taxa where little ecological information was available. For example, Verrucomicrobia had recurrent maxima in summer, while the Flavobacteria NS4, NS5 and NS2b clades had contrasting seasonal niches.
View Article and Find Full Text PDFWe investigated the effects of bottle enclosure on autotrophic and heterotrophic picoplankton in North and South subtropical Atlantic oligotrophic waters, where the biomass and metabolism of the microbial community are dominated by the picoplankton size class. We measured changes in both autotrophic (Prochlorococcus, Synechococcus, and picoeukaryotes) and heterotrophic picoplankton biomass during three time series experiments and in 16 endpoint experiments over 24 h in light and dark treatments. Our results showed a divergent effect of bottle incubation on the autotrophic and heterotrophic components of the picoplankton community.
View Article and Find Full Text PDF