In this work, five different dextran-based cryogels for controlled drug release are investigated. Vitamin B12 was used as a model drug for in vitro release tests. Two different drug-loading procedures were adopted, leading to very different drug release curves.
View Article and Find Full Text PDFCryogels represent a valid strategy as scaffolds for tissue engineering. In order to adequately support adhesion and proliferation of anchorage-dependent cells, different polymers need to be combined within the same scaffold trying to mimic the complex features of a natural extracellular matrix (ECM). For this reason, in this work, gelatin (Gel) and chondroitin sulfate (CS), both functionalized with methacrylic groups to produce CSMA and GelMA derivatives, were selected to prepare cryogel networks.
View Article and Find Full Text PDFIn this study, the amphiphilic N-palmitoyl-KTTKS peptide was integrated in the bilayer of egg-derived phosphatidylcholine (PC) vesicles using two different preparation methods, namely thin-film evaporation (TLE) and reverse-phase evaporation (REV). Both the REV and TLE methods allowed for the formation of homogeneous liposome dispersions (PdI < 0.20) with mean hydrodynamic diameters of <100 nm and <200 nm, respectively, a net negative surface charge and a percentage of structured phospholipids higher than 90%.
View Article and Find Full Text PDFIn this work, essential oil (LEO) was encapsulated in lipid-based nanoemulsions (NanoLEO) using the solvent-displacement technique. In order to preserve the colloidal stability of the formulation, LEO was appropriately doped with the incorporation of different levels of a water-insoluble oil used as a ripening inhibitor. All the nanoemulsion samples were evaluated in terms of the impact of the water-insoluble oil on the nanoemulsion formation, physical-chemical properties, and antibacterial effectiveness against (Gram-negative) and (Gram-positive).
View Article and Find Full Text PDFCritical-sized bone defects and articular cartilage injuries resulting from trauma, osteonecrosis, or age-related degeneration can be often non-healed by physiological repairing mechanisms, thus representing a relevant clinical issue due to a high epidemiological incidence rate. Novel tissue-engineering approaches have been proposed as an alternative to common clinical practices. This cutting-edge technology is based on the combination of three fundamental components, generally referred to as the tissue-engineering triad: autologous or allogenic cells, growth-stimulating factors, and a scaffold.
View Article and Find Full Text PDFChondroitin sulfate methacrylate (CS-MA) is a semisynthetic biopolymer increasingly used for the fabrication of chemical hydrogels. In this study, the methacrylation reaction of native CS was carried out with glycidyl methacrylate in dimethyl sulfoxide and optimized to obtain tunable and reproducible methacrylation degrees in a short reaction time. The methacrylation reaction was deeply characterized by mono- and bi-dimensional (1D, 2D) NMR spectroscopy of CS-MA derivatives with different methacrylation degrees.
View Article and Find Full Text PDFThe aim of this work was to optimize and characterize nanocomposite films based on gellan gum methacrylate (GG-MA) and silver nanoparticles (AgNPs) for application in the field of wound dressing. The films were produced using the solvent casting technique coupled with a photocuring process. The UV irradiation of GG-MA solutions containing glycerol as a plasticizer and different amounts of silver nitrate resulted in the concurrent crosslinking of the photocurable polymer and a reduction of Ag ions with consequent in situ generation of AgNPs.
View Article and Find Full Text PDFKiwi fruit samples ( Planch, cv. Hayward) represent a suitable and good source for fibers obtainment as well as for polyphenolic and carotenoid extraction. With this aim, in this study they were submitted to a double phase extraction to separate insoluble fibers by an organic phase containing lipophilic substances and an hydroalcoholic phase containing polyphenols and soluble fibers.
View Article and Find Full Text PDFRecently, we reported the synthesis and characterization of a new dextran derivative obtained by grafting polyethylene glycol methacrylate to a polysaccharide backbone through a carbonate bond. This moiety was introduced because it allows for the fabrication, through a photo-induced crosslinking reaction, of biodegradable hydrogels particularly suitable for the release of high molecular weight molecules. Here, we investigate the influence of the oxyethylene chain length and the molecular weight of the starting dextran on the main properties of the polymeric solutions as well as those of the corresponding hydrogels.
View Article and Find Full Text PDFCryogels are a particular type of hydrogels that possess great potential in both fields of drug delivery and tissue engineering. Based on these premises, the goal of this work was to develop a cytocompatible polymeric cryogel, which could be used as a spongy scaffold to promote the delivery of biomolecules. Precisely, the novel formulation was fabricated by combining dextran methacrylate (DEX-MA) and polyethylene glycol dimethacrylate (PEG-DMA) through radical polymerization at a temperature of -15 °C.
View Article and Find Full Text PDFPolymeric oral thin films (OTFs) were prepared by the casting method, combining gellan gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films were investigated as potential systems for buccal drug delivery using fluconazole (Class I of the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration of mucoadhesive and mechanical properties was observed.
View Article and Find Full Text PDFSince the application of nanotechnology to drug delivery, both polymer-based and lipid-based nanocarriers have demonstrated clinical benefits, improving both drug efficacy and safety. However, to further address the challenges of the drug delivery field, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymer-based and lipid-based delivery systems in a single nanocarrier. Within this scenario, this work is aimed at developing novel hybrid vesicles following the recent strategy of modifying the internal structure of liposomes.
View Article and Find Full Text PDFPEG-DMA was incorporated in unilamellar liposomes. PEG-DMA crosslinking by photo-induced radical reaction transforms the liquid aqueous core of the liposome into a hydrogel. The molecular weight of PEG-DMA significantly influences both structural and release properties of these hybrid nanosystems, by affecting both membrane permeability and diffusional properties of the inner core.
View Article and Find Full Text PDFIn this study, gellan gum (GG), a natural polysaccharide, was used to fabricate spherical porous beads suitable as sustained drug delivery systems for oral administration. GG was cross-linked with calcium ions to prepare polymeric beads. Rheological studies and preliminary experiments of beads preparation allowed to identify the GG and the CaCl concentrations suitable for obtaining stable and spherical particles.
View Article and Find Full Text PDFIn this work hydroxypropyl methylcellulose (HPMC) fast-dissolving thin films for oral administration are investigated. Furosemide (Class IV of the Biopharmaceutical Classification System) has been used as a model drug for in vitro release tests using three different set-ups: the Franz cell, the millifluidic flow-through device, and the paddle type dissolution apparatus (USP II). In order to enable drug incorporation within HPMC films, a multifunctional excipient, hydroxypropyl- β -cyclodextrin (HP- β -CD) has been included in the formulation, and the influence of HP- β -CD on film swelling, erosion, and release properties has been investigated.
View Article and Find Full Text PDFIn this work, deacylated gellan gum and the plasticizer glycerol were used as primary components for the preparation of thin films intended for the oral delivery of therapeutic molecules. The samples were prepared by a solvent casting method and characterized for their thickness, tensile properties, swelling ability, mucoadhesion capacity and uniform drug distribution. The amount of glycerol was varied from 20% to 75% w/w in order to obtain films with tunable mechanical properties and high drug loading efficiency.
View Article and Find Full Text PDF