During embryonic development, muscle tissues, skin, and a subset of vascular endothelial cells arise from Pax3-expressing embryonic progenitors defined as paraxial mesoderm. By contrast, haemogenic potential is well established for extra-embryonic mesoderm and intra-embryonic lateral plate mesoderm, which do not express Pax3. To date, it is not known whether the haematopoietic system also contains Pax3 lineage cells.
View Article and Find Full Text PDFTamoxifen-induced CreER-LoxP recombination is often used to induce spatiotemporally controlled gene deletion in genetically modified mice. Prior work has shown that tamoxifen and tamoxifen-induced CreER activation can have off-target effects that should be controlled. However, it has not yet been reported whether tamoxifen administration, independently of CreER expression, interacts adversely with commonly used anaesthetic drugs such as medetomidine or its enantiomer dexmedetomidine in laboratory mice ().
View Article and Find Full Text PDFBackground: The ability of recombinant adeno-associated virus to transduce preimplantation mouse embryos has led to the use of this delivery method for the production of genetically altered knock-in mice via CRISPR-Cas9. The potential exists for this method to simplify the production and extend the types of alleles that can be generated directly in the zygote, obviating the need for manipulations of the mouse genome via the embryonic stem cell route.
Results: We present the production data from a total of 13 genetically altered knock-in mouse models generated using CRISPR-Cas9 electroporation of zygotes and delivery of donor repair templates via transduction with recombinant adeno-associated virus.
Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm.
View Article and Find Full Text PDFFetal fluid contents have functions in protecting fetuses and are essential for fetal development and maturation. However, little is known about the exact physiological functions of fetal fluids in fetal development, as well as the changing composition throughout the gestational period in cats. In this study, the biochemical composition of amniotic (AMN) and allantoic (ALL) fluids was investigated, as well as in the maternal serum of pregnant queens.
View Article and Find Full Text PDFBlood vessels form vast networks in all vertebrate organs to sustain tissue growth, repair and homeostatic metabolism, but they also contribute to a range of diseases with neovascularisation. It is, therefore, important to define the molecular mechanisms that underpin blood vessel growth. The receptor tyrosine kinase KIT is required for the normal expansion of hematopoietic progenitors that arise during embryogenesis from hemogenic endothelium in the yolk sac and dorsal aorta.
View Article and Find Full Text PDFTop Companion Anim Med
March 2022
A 7-year-old male Caucasian shepherd presented with a 3 month history of intermittent hematuria, penile discharge, and abdominal pain and distension. The dog had a history of prostatic hyperplasia with multiple cysts, diagnosed by the referring clinician two years prior to the case presentation. Two oral courses of antibiotics and antiandrogens were administered by the treating veterinarian without resolution.
View Article and Find Full Text PDFIn recent years, due to the growing phenomenon of antimicrobial resistance, the search for alternative strategies to antibiotic treatments is increasing and a considerable interest for the use of medical honey in clinical practice has emerged. Honey has been used for the treatment of skin lesions, in both humans and animals. However, knowledge concerning the use of medical honey in non‑traditional companion animals is scarce.
View Article and Find Full Text PDFIn the mouse embryo, endothelial cell (EC) progenitors almost concomitantly give rise to the first blood vessels in the yolk sac and the large vessels of the embryo proper. Although the first blood cells form in the yolk sac before blood vessels have assembled, consecutive waves of hematopoietic progenitors subsequently bud from hemogenic endothelium located within the wall of yolk sac and large intraembryonic vessels in a process termed endothelial-to-hematopoietic transition (endoHT). The receptor tyrosine kinase KIT is required for late embryonic erythropoiesis, but KIT is also expressed in hematopoietic progenitors that arise via endoHT from yolk sac hemogenic endothelium to generate early, transient hematopoietic waves.
View Article and Find Full Text PDFForty-five Horsfield's tortoises (; syn. , Russian tortoise) belonging to different owners had decreased appetite and respiratory issues. Twenty-nine tortoises had epiphora, dyspnea, and white necrotic diphtheroid oral plaques (group G1).
View Article and Find Full Text PDFVascular endothelial growth factor A (VEGF) induces angiogenesis and vascular hyperpermeability in ocular tissues and is therefore a key therapeutic target for eye conditions in which these processes are dysregulated. In contrast, the therapeutic potential of VEGF's neurotrophic roles in the eye has remained unexploited. In particular, it is not known whether modulating levels of any of the 3 major alternatively spliced VEGF isoforms might provide a therapeutic approach to promote neural health in the eye without inducing vascular pathology.
View Article and Find Full Text PDFAbnormalities of the canine prostate gland, in particular, benign hyperplasia and cysts, are frequent in dogs over 5 years of age. Treatment strategies for dogs with prostatic cysts include ultrasound-guided percutaneous drainage with alcohol sclerotherapy, reduction surgery, and omentalization. The aim of this study was to evaluate the use of platelet-rich plasma (PRP) for the treatment of prostatic cysts in dogs.
View Article and Find Full Text PDFThe earliest blood vessels in mammalian embryos are formed when endothelial cells differentiate from angioblasts and coalesce into tubular networks. Thereafter, the endothelium is thought to expand solely by proliferation of pre-existing endothelial cells. Here we show that a complementary source of endothelial cells is recruited into pre-existing vasculature after differentiation from the earliest precursors of erythrocytes, megakaryocytes and macrophages, the erythro-myeloid progenitors (EMPs) that are born in the yolk sac.
View Article and Find Full Text PDFTesticular tumours are the most common neoplasms in male dogs accounting for approximately 90% of all tumours affecting the genitourinary tract. Gray-scale ultrasonography in combination with colour and power Doppler imaging has been well accepted as an accurate technique for assessing scrotal lesions and vascularization of the testis. Colour Doppler sensitivity for low blood flows appears promising in the study of testicular disorders.
View Article and Find Full Text PDFThe royal python (Python regius) is commonly bred in captivity. To have a successful breeding season, accurate monitoring of the reproductive activity is necessary. The use of non-invasive monitoring methods in exotics is important in order to minimize stress.
View Article and Find Full Text PDFVisual information is relayed from the eye to the brain via retinal ganglion cell (RGC) axons. Mice lacking NRP1 or NRP1-binding VEGF-A isoforms have defective RGC axon organisation alongside brain vascular defects. It is not known whether axonal defects are caused exclusively by defective VEGF-A signalling in RGCs or are exacerbated by abnormal vascular morphology.
View Article and Find Full Text PDFObjective: Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the importance of VEGF or its upstream regulators hypoxia-inducible factor-1α (HIF1α) and hypoxia-inducible factor-2α (HIF2α) as myeloid-derived regulators of ONV remains to be determined.
View Article and Find Full Text PDFIn mammals, the outflow tract (OFT) of the developing heart septates into the base of the pulmonary artery and aorta to guide deoxygenated right ventricular blood into the lungs and oxygenated left ventricular blood into the systemic circulation. Accordingly, defective OFT septation is a life-threatening condition that can occur in both syndromic and nonsyndromic congenital heart disease. Even though studies of genetic mouse models have previously revealed a requirement for VEGF-A, the class 3 semaphorin SEMA3C, and their shared receptor neuropilin 1 (NRP1) in OFT development, the precise mechanism by which these proteins orchestrate OFT septation is not yet understood.
View Article and Find Full Text PDFThe vascular endothelial growth factor (VEGFA, VEGF) regulates neurovascular patterning. Alternative splicing of the Vegfa gene gives rise to three major isoforms termed VEGF121, VEGF165 and VEGF189. VEGF165 binds the transmembrane protein neuropilin 1 (NRP1) and promotes the migration, survival and axon guidance of subsets of neurons, whereas VEGF121 cannot activate NRP1-dependent neuronal responses.
View Article and Find Full Text PDFTo enable new blood vessel growth, endothelial cells (ECs) express neuropilin 1 (NRP1), and NRP1 associates with the receptor tyrosine kinase VEGFR2 after binding the vascular endothelial growth factor A (VEGF) to enhance arteriogenesis. We report that NRP1 contributes to angiogenesis through a novel mechanism. In human and mouse ECs, the integrin ligand fibronectin (FN) stimulated actin remodeling and phosphorylation of the focal adhesion component paxillin (PXN) in a VEGF/VEGFR2-independent but NRP1-dependent manner.
View Article and Find Full Text PDFNeuropilin 1 (NRP1) is a receptor for class 3 semaphorins and vascular endothelial growth factor (VEGF) A and is essential for cardiovascular development. Biochemical evidence supports a model for NRP1 function in which VEGF binding induces complex formation between NRP1 and VEGFR2 to enhance endothelial VEGF signalling. However, the relevance of VEGF binding to NRP1 for angiogenesis in vivo has not yet been examined.
View Article and Find Full Text PDFNeuropilin (NRP) 1 is a receptor for the vascular endothelial growth factor (VEGF)-A and is essential for normal angiogenesis. Previous in vitro experiments identified NRP1 interactions with VEGF-A's main signaling receptor VEGFR2 within endothelial cells, but also between nonendothelial NRP1 and endothelial VEGFR2. Consistent with an endothelial role for NRP1 in angiogenesis, we found that VEGFR2 and NRP1 were coexpressed in endothelial tip and stalk cells in the developing brain.
View Article and Find Full Text PDFNeuropilin 1 (NRP1) is a transmembrane glycoprotein that is essential for blood vessel development in vertebrates. Best known for its ability to bind members of the vascular endothelial growth factor (VEGF) and class 3 semaphorin families through its extracellular domain, it also has a highly conserved cytoplasmic domain, which terminates in a SEA motif that binds the PDZ protein synectin/GIPC1/NIP. Previous studies in zebrafish embryos and tissue culture models raised the possibility that the SEA motif of NRP1 is essential for angiogenesis.
View Article and Find Full Text PDF