The infiltration of secondary treated effluent (STE) into the soil downstream of wastewater treatment plants is becoming increasingly common in a climate change context. In STE infiltration, STE is discharged onto the soil over a large surface allowing for a gradual infiltration of the water. This paper investigates a novel time-lapse electrical resistivity tomography strategy to evaluate the impact of STE infiltration on the water pathways of two planted loamy-soil trenches located in a Fluvisol region in southwestern France.
View Article and Find Full Text PDFWastewater treatment, a major issue at the European level, focuses on improving surface water and groundwater quality, preserving the receiving environment, and ensuring a sustainable use of water. Soil infiltration is increasingly practiced downstream of wastewater treatment plants, particularly in rural areas without surface water bodies, as is the use of soil as an additional buffer and treatment step. However, the design of infiltration areas on heterogeneous soils remains an extremely complex task due to the costly and time-consuming spatial measurement of saturated hydraulic conductivity (Ks).
View Article and Find Full Text PDFNatural apatites have previously shown a great capacity for phosphate retention from wastewater. However, its fine particle size distribution may lead to a premature clogging of the filter. Accordingly, a granulated apatite product was developed and manufactured in order to control the particle size distribution of the media.
View Article and Find Full Text PDF