Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis.
View Article and Find Full Text PDFRecent studies show the importance of hydrogel geometry for various applications, such as encoding, micromachines, or tissue engineering. However, fabricating hydrogel structures with micrometer-sized features, advanced geometry, and precise control of porosity remains challenging. This work presents hierarchically structured hydrogels, so-called hydrogel patches, with internally deviating regions on a micron-scale.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2024
A novel approach to selectively modify narrow subareas of metallic nanostructures adjacent to plasmonic hotspots, where strong electromagnetic field amplification occurs upon localized surface plasmon (LSP) excitation, is reported. In contrast to surface plasmon-triggered polymerization, it relies on plasmonically enhanced multiphoton crosslinking (MPC) of polymer chains carrying photoactive moieties. When they are contacted with metallic nanostructures and irradiated with a femtosecond near-infrared beam resonantly coupled with LSPs, the enhanced field intensity locally exceeds the threshold and initiates MPC only at plasmonic hotspots.
View Article and Find Full Text PDFAlthough micron-sized microgels have become important building blocks in regenerative materials, offering decisive interactions with living matter, their chemical composition mostly significantly varies when their network morphology is tuned. Since cell behavior is simultaneously affected by the physical, chemical, and structural properties of the gel network, microgels with variable morphology but chemical equivalence are of interest. This work describes a new method to produce thermoresponsive microgels with defined mechanical properties, surface morphologies, and volume phase transition temperatures.
View Article and Find Full Text PDFFibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice.
View Article and Find Full Text PDFTissue Eng Part C Methods
September 2024
Biomedical applications such as drug delivery, tissue engineering, and functional surface coating rely on switchable adsorption and desorption of specialized guest molecules. Poly(dehydroalanine), a polyzwitterion containing pH-dependent positive and negative charges, shows promise for such reversible loading, especially when integrated into a gel network. Herein, we present the fabrication of poly(dehydroalanine)-derived gels of different size scales and evaluate them with respect to their practical use in biomedicine.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation.
View Article and Find Full Text PDFMicroporous annealed particle (MAP) scaffolds are investigated for their application as injectable 3D constructs in the field of regenerative medicine and tissue repair. While available MAP scaffolds provide a stable interlinked matrix of microgels for cell culture, the infiltration depth and space for cells to grow inside the scaffolds is pre-determined by the void fraction during the assembly. In the case of MAP scaffolds fabricated from interlinked spherical microgels, a cellularity gradient can be observed with the highest cell density on the scaffold surface.
View Article and Find Full Text PDFMicrogels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications.
View Article and Find Full Text PDFIn this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase.
View Article and Find Full Text PDFNanofibrous scaffolds are widely investigated for tendon tissue engineering due to their porous structure, high flexibility, and the ability to guide cells in a preferred direction. Previous research has shown that providing a microenvironment similar to in vivo settings improves tissue regeneration. Therefore, in this work, ingenious multicomponent nanoyarn scaffolds that mimic the fibrillar and tubular structures of tendons are developed for the first time through electrospinning and bundling nanoyarns followed by electrospinning of a nanofibrous shell around the bundle.
View Article and Find Full Text PDFRecreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties.
View Article and Find Full Text PDFToday's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity.
View Article and Find Full Text PDFTherapeutic antibodies are the key treatment option for various cytokine-mediated diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease. However, systemic injection of these antibodies can cause side effects and suppress the immune system. Moreover, clearance of therapeutic antibodies from the blood is limiting their efficacy.
View Article and Find Full Text PDFSurface tension provides microbubbles (MB) with a perfect spherical shape. Here, we demonstrate that MB can be engineered to be nonspherical, endowing them with unique features for biomedical applications. Anisotropic MB were generated via one-dimensionally stretching spherical poly(butyl cyanoacrylate) MB above their glass transition temperature.
View Article and Find Full Text PDFContinuous flow manufacturing (CFM) has shown remarkable advantages in the industrial-scale production of drug-loaded nanomedicines, including mRNA-based COVID-19 vaccines. Thus far, CFM research in nanomedicine has mainly focused on the initial particle formation step, while post-formation production steps are hardly ever integrated. The opportunity to implement in-line quality control of critical quality attributes merits closer investigation.
View Article and Find Full Text PDFMicrobubbles (MB) are used as ultrasound (US) contrast agents in clinical settings because of their ability to oscillate upon exposure to acoustic pulses and generate nonlinear responses with a stable cavitation profile. Polymeric MB have recently attracted increasing attention as molecular imaging probes and drug delivery agents based on their tailorable acoustic responses, high drug loading capacity, and surface functionalization capabilities. While many of these applications require MB to be functionalized with biological ligands, the impact of bioconjugation on polymeric MB cavitation and acoustic properties remains poorly understood.
View Article and Find Full Text PDFGrowing millimeter-scaled functional tissue remains a major challenge in the field of tissue engineering. Therefore, microporous annealed particles (MAPs) are emerging as promising porous biomaterials that are formed by assembly of microgel building blocks. To further vary the pore size and increase overall MAP porosity of mechanically stable scaffolds, rod-shaped microgels with high aspect ratios up to 20 are chemically interlinked into highly porous scaffolds.
View Article and Find Full Text PDFPolymer self-assembly is a crucial process in materials engineering. Currently, almost all polymer self-assembly is limited to non-covalent bonding methods, even though these methods have drawbacks as they require complicated synthesis techniques and produce relatively unstable structures. Here, a novel mechanism of covalent polymer self-assembly is discovered and employed to address drawbacks of non-covalent polymer self-assembly.
View Article and Find Full Text PDFGas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications.
View Article and Find Full Text PDFThe intracellular environment is crowded with macromolecules that influence biochemical equilibria and biomacromolecule diffusion. The incorporation of such crowding in synthetic cells would be needed to mimic the biochemistry of living cells. However, only a few methods provide crowded artificial cells, moreover providing cells with either heterogeneous size and composition or containing a significant oil fraction.
View Article and Find Full Text PDFA two-component system of functionalized microgels from microfluidics allows for fast interlinking into 3D macroporous constructs in aqueous solutions without further additives. Continuous photoinitiated on-chip gelation enables variation of the microgel aspect ratio, which determines the building block properties for the obtained constructs. Glycidyl methacrylate (GMA) or 2-aminoethyl methacrylate (AMA) monomers are copolymerized into the microgel network based on polyethylene glycol (PEG) star-polymers to achieve either epoxy or amine functionality.
View Article and Find Full Text PDFIn this work, a two component microgel assembly using soft anisometric microgels that interlink to create a 3D macroporous construct for cell growth is reported. Reactive microgel rods with variable aspect ratio are produced via microfluidics in a continuous plug-flow on-chip gelation method by photoinitiated free-radical polymerization of star-polyethylene glycol-acrylate with glycidyl methacrylate or 2-aminoethyl methacrylate comonomers. The resulting complementary epoxy- and amine-functionalized microgels assemble and interlink with each other via a ring opening reaction, resulting in macroporous constructs with pores up to several hundreds of micrometers.
View Article and Find Full Text PDF