The in situ formation of cytotoxic metabolites by an enzyme-catalyzed reaction is a recent approach in cancer therapy. The present results show that multidrug-resistant human colon adenocarcinoma cells (LoVo) are significantly more sensitive than corresponding wild-type cells to hydrogen peroxide and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. Pre-treatment of the cells with N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), a lysosomotropic compound, sensitized both cell lines to the subsequent exposure to spermine metabolites, as was evident from the decrease of cell survival by a log unit.
View Article and Find Full Text PDFIn situ formation of cytotoxic metabolites by an enzyme-catalyzed reaction is a recent approach in cancer chemotherapy. We demonstrate that multidrug resistant human melanoma cells (M14 ADR) are more sensitive than the corresponding wild type cells (M14 WT) to hydrogen peroxide and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. Hydrogen peroxide was mainly responsible for the loss of cell viability.
View Article and Find Full Text PDFHyperthermia is currently receiving widespread attention when associated with other therapeutic modalities, such as irradiation or chemotherapy, in the treatment of cancer. The occurrence of resistance to cytotoxic pharmacological agents in tumor cells, associated with several phenotypic alterations, is one of the major obstacles to successful anticancer chemotherapy. We investigated a new strategy to overcome multidrug resistance (MDR) cancer cells, using bovine serum amine oxidase (BSAO), which forms toxic products from spermine (H2O2 and aldehydes).
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2006
MDL 72527 was considered a selective inhibitor of FAD-dependent polyamine oxidases. In the present communication, we demonstrate that MDL 72527 inactivates bovine serum amine oxidase, a copper-containing, TPQ-enzyme, time-dependently at 25 degrees C. In striking contrast, the enzyme remained active after incubation with excessive MDL 72527 at 37 degrees C, even after 70 h of incubation.
View Article and Find Full Text PDF