Publications by authors named "Laura Cutroneo"

Plastic floating on the ocean surface represents about 1 % of all plastic in the ocean, despite the buoyancy of most plastics. Biofouling can help to sink debris, which could explain this discrepancy. A set of laboratory experiments was conducted to investigate biofilm-induced effects on the buoyancy of different plastic debris.

View Article and Find Full Text PDF

Highly anthropized areas as ports represent complex scenarios that require accurate monitoring plans aimed to address the environmental status. In this context, the activities of the EU Interreg Project "GEstione dei REflui per il MIglioramento delle Acque portuali (GEREMIA)" were focused on comparing sites differently affected by human presence, as the Port of Genoa and the natural area of the S'Ena Arrubia fishpond: a panel of analyses was carried out on Mugilidae fish sampled in these two areas, aimed to address trace metal accumulation in the liver, gills, and muscle, as well as cytochrome P450 (CYP450) induction in liver and biliary polycyclic aromatic hydrocarbon (PAH) metabolites, and histopathological alterations in the liver and gills. Chemical analyses in the liver, gills, and muscle of specimens collected in the port area showed an overall higher degree of trace metal contamination compared to the natural fishpond, and similar results were obtained in terms of CYP450 induction and biliary PAH metabolites, suggesting a higher exposure to organic compounds.

View Article and Find Full Text PDF

In the last decade, interest in monitoring and managing plastic pollution has greatly increased. This study compared levels of microplastic contamination in stomachs of Mugilidae fish, suggesting this family as a target for plastic pollution monitoring in areas with different degrees of anthropisation. Two sites characterised by low and high anthropic impact, a fishpond (S'Ena Arrubia, Italy) and a port (Genoa, Italy), respectively, were compared.

View Article and Find Full Text PDF

Plastic and microplastic pollutions are known to be widespread across the planet in all types of environments. However, relatively little about microplastic quantities in the deeper areas of the oceans is known, due to the difficulty to reach these environments. In this work, we present an investigation of microplastic (<5 mm) distribution performed in the bottom sediments of the abyssal plain off the coast and the canyon of Toulon (France).

View Article and Find Full Text PDF

The Port of Genoa (north-western Mediterranean Sea) receives sediments from two different catchment areas (Bisagno and Polcevera torrents). The aim of the work is to evaluate if Rare Earth Elements (REEs) could be used to identify the two sedimentary inputs and to unravel the origin of inorganic contaminants in an anthropised basin. REE results constitute a baseline for this port.

View Article and Find Full Text PDF

Contamination of marine sediments by organic and/or inorganic compounds represents one of the most critical problems in marine environments. This issue affects not only biodiversity but also ecosystems, with negative impacts on sea water quality. The scientific community and the European Commission have recently discussed marine environment and ecosystem protection and restoration by sustainable green technologies among the main objectives of their scientific programmes.

View Article and Find Full Text PDF

Environmental contamination by plastics and microplastics is a recognised problem worldwide, and it is the focus of many research teams. In the quantification of microplastics in the environment (plastic items with dimensions between 1 μm and 5 mm), the search for shared and universally recognised protocols and methodologies is still ongoing. In this study, the use of a method for extracting microplastics from marine sediments based on density separation has been considered.

View Article and Find Full Text PDF

River estuaries, continental shelf, and sediment contamination are closely linked from the point of view of sediment transport and diffusion that is governed by different factors such as sea waves and currents, river flows and floods, and sediment characteristics. Taking these factors into consideration, we have examined marine environmental and marine bottom sediments off the mouth of a stream to highlight the main ways of sediment and contaminant transport and diffusion on the continental shelf. For this purpose, we followed a multidisciplinary approach, studying circulation of water masses, hydrological characteristics of water column, distribution and main characteristics of sediment grain size, sediment mineralogical composition, and metal concentrations of bottom sediments.

View Article and Find Full Text PDF

The article Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment.

View Article and Find Full Text PDF

A study on the Rare Earth Element (REE) distribution in the bottom sediments of the Gulf of Tigullio (north-west Italy) was conducted. The results constitute a baseline for this zone of the Ligurian Sea and enabled the obtaining of valuable information on the origin and transport of sediments in the gulf. The distribution of REEs is controlled by phosphates, mainly monazite, and is generally homogeneous in the study area, reflecting the homogeneous distribution of the minerals.

View Article and Find Full Text PDF

The European Interreg Italy-France 2014-2020 Maritime Project SPlasH! (Stop to Plastics in HO!) focused on the study of microplastics (MPs) in the marine port environment to evaluate their presence, abundance, and mechanisms of diffusion to the open sea. In the framework of this project, a worldwide review of 74 studies was carried out, providing an overview of MP investigation techniques, focusing on sampling strategies, laboratory methodologies, and identification of MPs collected in seawater, and specifically evaluating their applicability to the marine port environment. Nets were the most commonly used device for MP surface sampling, but their use can be difficult in narrow spaces within the port basins, and they must be coupled to discrete sampling devices to cover all port basins.

View Article and Find Full Text PDF

Metals, whether essential (Cu, Zn, Cr, Fe, Mn) or non-essential (Al, As, Cd, Ni, Pb, Hg) for organism metabolism, occur naturally in the marine environment and their abundance can increase due to the presence of human activities. In this study, fish were used as bio-indicators, to determine a correlation between the bio-accumulation of metals in muscle and gill tissues and the health status of fish. The study area was the Gulf of Tigullio (north-western Italy), which is impacted by various sources of metal contamination.

View Article and Find Full Text PDF

Contaminated sediments represent an important management problem that also concerns their remediation. Indeed, port dredging activities produce huge volumes of contaminated sediments that, in turn, require proper handling because of their quantity of inorganic and organic substances. Conventional management-remediation strategies of polluted sediment involve sediment washing, electron-chemical separation, and thermal treatment.

View Article and Find Full Text PDF

Acid Mine Drainage (AMD) is one of the most important sources of pollution in fluvial systems and can enrich rivers in dissolved and suspended metals of environmental concern. Colloidal particles may favour the transport of metals to the sea, where metals can be accumulated in bottom sediments. The aim of this paper was to evaluate the mobility of metals in the "Baia delle Favole" bottom sediments (Sestri Levante, Italy), which receive the input of the AMD impacted Gromolo Torrent, using chemical speciation (BCR sequential extraction).

View Article and Find Full Text PDF

Environmental contamination has become a global problem of increasing intensity due to the exponential growth of industrialization. One main debated issue is the metal contamination of rivers receiving Acid Mine Drainage (AMD) from active/abandoned mines. In order to assess the quality of lotic systems, diatoms are commonly used, as their assemblage modifies on the basis of changes in environmental parameters.

View Article and Find Full Text PDF

Sediment dredging can cause damage to the marine environment due to mobilization of sediments and contaminants. The effects of dredging and boundary environmental conditions on the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in water were evaluated during dredging of the Oil Port of Genoa-Multedo (Italy). Results showed that turbidity and PAH concentrations increased in the water during dredging.

View Article and Find Full Text PDF

Metal-polluted mine waters represent a major threat to the quality of waters and sediments in a downstream basin. At the confluence between acidic mine waters and the unpolluted waters of the Gromolo Torrent (Liguria, North-West Italy), the massive formation of an ochreous amorphous precipitate takes place. This precipitate forms a soft blanket that covers the torrent bed and can be observed down to its mouth in the sea.

View Article and Find Full Text PDF