For several years now, nanoscaled materials have been implemented in biotechnological applications related to animal (in particular human) cells and related pathologies. However, the use of nanomaterials in plant biology is far less widespread, although their application in this field could lead to the future development of plant biotechnology applications. For any practical use, it is crucial to elucidate the relationship between the nanomaterials and the target cells.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles coated with titanium dioxide have been synthesized, growing the titanium dioxide directly either on the magnetic nuclei or on magnetic nanoparticles previously coated with a semihydrophobic silica layer. Both coatings have been obtained by sol-gel. Since it is well-known that the existence of the intermediate silica layer influences the physicochemical properties of the material, a detailed characterization of both types of coatings has been carried out.
View Article and Find Full Text PDFSpatially resolved electron energy loss spectroscopy (SR-EELS) using scanning transmission electron microscope (STEM) allows the identification and determination of the spatial distribution of the components/elements of immuno-functionalized core-shell superparamagnetic magnetite nanoparticles. Here, we report that SR-EELS measurements allow the direct identification and study of the biological moieties (protein G and anti-HRP antibody) in complex bionanocarriers of relevance for biomedical applications. Our findings show that the biomacromolecules are located on specific areas on the nanoparticles' surface.
View Article and Find Full Text PDFThe development of nanodevices for agriculture and plant research will allow several new applications, ranging from treatments with agrochemicals to delivery of nucleic acids for genetic transformation. But a long way for research is still in front of us until such nanodevices could be widely used. Their behaviour inside the plants is not yet well known and the putative toxic effects for both, the plants directly exposed and/or the animals and humans, if the nanodevices reach the food chain, remain uncertain.
View Article and Find Full Text PDF