Publications by authors named "Laura Comelli"

In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3'UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3'UTR in melanoma cells.

View Article and Find Full Text PDF

BRAFV600E is a mutant Ser-Thr protein kinase that plays a crucial role in many types of cancer, including melanoma. Despite several aspects of BRAFV600E biology have been already elucidated, the proteins that regulate its expression and activity remain largely unknown, hampering our capacity to control its unrestrained effects. Here, we propose yeast Saccharomyces cerevisiae as a model system that can be used to achieve a better understanding of the regulation of human BRAFV600E.

View Article and Find Full Text PDF

Background: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood.

Results: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the role of non-coding RNAs, specifically microRNAs, in melanoma driven by the BRAFV600E mutation, highlighting their distinct functions and regulation.* -
  • Researchers identified miR-204 and miR-211 as key microRNAs influenced by vemurafenib treatment, with miR-204 promoting anti-motility effects and miR-211 supporting pigmentation through different pathways.* -
  • The findings challenge the assumption that all miRNAs in the same family have similar functions and suggest a new treatment approach that combines ERK pathway inhibitors with agents that reduce pigmentation in melanomas.*
View Article and Find Full Text PDF

Aims: The industrial development of a product requires performing a deep analysis to highlight its characteristics useful for future design. The clinical use of a product stimulates knowledge improvement about it in a constant effort of progress. This work shows the biological characterization of CMC composite mesh.

View Article and Find Full Text PDF

Autoimmunity can develop from an often undetermined interplay of genetic and environmental factors. Rare forms of autoimmune conditions may also result from single gene mutations as for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, an autosomal recessive disease associated with mutated forms of the autoimmune regulator gene. It was proposed that genetic variability in the autoimmune regulator locus, in particular heterozygous loss-of-function mutations, might favor the development of organ-specific autoimmunity by affecting the presentation of self-antigens in the thymus.

View Article and Find Full Text PDF
Article Synopsis
  • The medial layer of arteries is primarily made up of vascular smooth muscle cells (VSMCs) that can transition to a migratory state, contributing to artery blockages and plaques.
  • Researchers used a proteomics method to analyze vesicles (microvesicles and exosomes) released by VSMCs, identifying 349 proteins with various functions.
  • Notable distinctions were found between exosomes and microvesicles from resting and activated VSMCs, highlighting potential markers that could indicate changes in cell state and contribute to cell communication.
View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs), if activated by growth factors as a consequence of vessel injuries, acquire the ability to proliferate and migrate thus contributing to the formation of neointima and atherosclerotic plaque. In this study, a gel-free and label-free proteomic approach was proposed to highlight factors modulated during VSMC activation. Twenty proteins, differentially expressed between quiescent and activated cells, were identified.

View Article and Find Full Text PDF

By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR.

View Article and Find Full Text PDF

Recent evidence points to homeotic proteins as actors in the crosstalk between development and DNA replication. The present work demonstrates that HOXC13, previously identified as a new member of human DNA replicative complexes, is a stable component of early replicating chromatin in living cells: it displays a slow nuclear dynamics due to its anchoring to the DNA minor groove via the arginine-5 residue of the homeodomain. HOXC13 binds in vivo to the lamin B2 origin in a cell-cycle-dependent manner consistent with origin function; the interaction maps with nucleotide precision within the replicative complex.

View Article and Find Full Text PDF

The homeotic (and oncogenic) HOXC13 protein was shown to have an affinity for a DNA fragment corresponding to the sequence covered by the pre-replicative complex of the human lamin B2 replication origin. We show here that HOXC13 is a member of human replicative complexes. Our fluorescent fusion-protein data demonstrate that it co-localizes with replication foci of early-S cells and that this peculiar behaviour is driven by the homeodomain.

View Article and Find Full Text PDF

To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.

View Article and Find Full Text PDF