Nowadays, artificial intelligence is used in many fields to diagnose and treat different diseases. Robots are also useful tools that substitute for human work. Despite robots being used also for touch therapy, can they substitute for the human touch? Human touch has a strong social component, and it is necessary for the correct development of newborns and the treatment of pathological situations.
View Article and Find Full Text PDFThe secondary somatosensory cortex (SII) and posterior insular cortex (pIC) are recognized for processing touch and movement information during hand manipulation in humans and non-human primates. However, their involvement in three-dimensional (3D) object manipulation remains unclear. To investigate neural activity related to hand manipulation in the SII/pIC, we trained two macaque monkeys to grasp three objects (a cone, a plate, and a ring) and engage in visual fixation on the object.
View Article and Find Full Text PDFWhat is the significance of a touch encoded by slow-conducted unmyelinated C-tactile (CT) fibers? It is the so-called affiliative touch, which has a fundamental social impact. In humans, it has been demonstrated that the affiliative valence of this kind of touch is encoded by a dedicated central network, not involved in the encoding of discriminative touch, namely, the "social brain". Moreover, CT-related touch has significant consequences on the human autonomic system, not present in the case of discriminative touch, which does not involve CT fibers as the modulation of vagal tone.
View Article and Find Full Text PDFDespite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity.
View Article and Find Full Text PDFAccumulating evidence indicates that the peripersonal space (PPS) constitutes a privileged area for efficient processing of proximal stimuli, allowing to flexibly adapt our behavior both to the physical and social environment. Whether and how behavioral and physiological signatures of PPS relate to each other in emotional contexts remains, though, elusive. Here, we addressed this question by having participants to discriminate male from female faces depicting different emotions (happiness, anger or neutral) and presented at different distances (50 cm-300 cm) while we measured the reaction time and accuracy of their responses, as well as pupillary diameter, heart rate and heart rate variability.
View Article and Find Full Text PDFSleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na-gated K channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains.
View Article and Find Full Text PDFThe motor thalamus (MTh) plays a crucial role in the basal ganglia (BG)-cortical loop in motor information codification. Despite this, there is limited evidence of MTh functionality in normal and Parkinsonian conditions. To shed light on the functional properties of the MTh, we examined the effects of acute and chronic dopamine (DA) depletion on the neuronal firing of MTh neurons, cortical/MTh interplay and MTh extracellular concentrations of glutamate (GLU) and gamma-aminobutyric acid (GABA) in two states of DA depletion: acute depletion induced by the tetrodotoxin (TTX) and chronic denervation obtained by 6-hydroxydopamine (6-OHDA), both infused into the medial forebrain bundle (MFB) in anesthetized rats.
View Article and Find Full Text PDFLow frequency deep brain stimulation (DBS) of the pedunculopontine nucleus area (PPNa) has been proposed as a novel surgical target for gait dysfunction in the late stage of Parkinson's disease (PD). Since the mid-2000s, we have shown that intrasurgical delivery of stimulation in the pontine tegmentum affects the firing activity in the subthalamic nucleus (STN), but its effect on STN oscillatory rhythms has not been studied. Neuronal oscillations detected by local field potential (LFPs) have great importance, since they express complex movement-related behavior such as locomotion.
View Article and Find Full Text PDFParkinson's disease is a common neurodegenerative disease characterized by a widely variety of motor and non-motor symptoms. While the motor deficits are only visible following a severe dopamine depletion, neurodegenerative process and some non-motor symptoms are manifested years before the motor deficits. Importantly, chronic degeneration of dopaminergic neurons leads to the development of compensatory mechanisms that play roles in the progression of the disease and the response to anti-parkinsonian therapies.
View Article and Find Full Text PDFParkinson's disease is a common neurodegenerative disease characterized by a widely variety of motor and non-motor symptoms. While the motor deficits are only visible following a severe dopamine depletion, neurodegenerative process and some non-motor symptoms are manifested years before the motor deficits. Importantly, chronic degeneration of dopaminergic neurons leads to the development of compensatory mechanisms that play roles in the progression of the disease and the response to anti-parkinsonian therapies.
View Article and Find Full Text PDFThe data described here relate to the article entitled "The effect of pleasant touch on nose skin temperature, heart rate and heart rate variability: preliminary results in a male laboratory rhesus monkey" (Grandi and Heinzl, 2016) [1]. The cited paper and article here present additional material which represents the first evidence of the effect of pleasant touch in non-human primates in terms of skin temperature change, as recorded by means of infrared thermography. The sweep is considered a pleasant touch for monkeys.
View Article and Find Full Text PDFPleasant touch may serve as a foundation for affiliative behavior, providing a mechanism for the formation and maintenance of social bonds among conspecifics. In humans, this touch is usually referred to as the caress. Dynamic caressing performed on the hairy skin with a velocity of 1-10 cm/s is perceived as being pleasant and determines positive cardio-physiological effects.
View Article and Find Full Text PDFUnderstanding how animals express positive emotions is becoming an interesting and promising area of research in the study of animal emotions and affective experiences. In the present study, we used infrared thermography in combination with behavioral measures, heart rate (HR) and heart rate variability (HRV), to investigate dogs' emotional responses to a potentially pleasant event: receiving palatable food from the owner. Nineteen adult pet dogs, 8 females and 11 males, were tested and their eye temperature, HR, HRV and behavior were recorded during a 30-minutestestconsisting of three 10-minute consecutive phases: Baseline (Phase 1), positive stimulation through the administration of palatable treats (Feeding, Phase 2) and Post-feeding condition following the positive stimulation (Phase 3).
View Article and Find Full Text PDFGrooming is a widespread, essential, and complex behavior with social and affiliative valence in the non-human primate world. Its impact at the autonomous nervous system level has been studied during allogrooming among monkeys living in a semi-naturalistic environment. For the first time, we investigated the effect of human grooming to monkey in a typical experimental situation inside laboratory.
View Article and Find Full Text PDFThe discovery of mirror neurons in the ventral premotor cortex (area F5) and inferior parietal cortex (area PFG) in the macaque monkey brain has provided the physiological evidence for direct matching of the intrinsic motor representations of the self and the visual image of the actions of others. The existence of mirror neurons implies that the brain has mechanisms reflecting shared self and other action representations. This may further imply that the neural basis self-body representations may also incorporate components that are shared with other-body representations.
View Article and Find Full Text PDFThe posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions.
View Article and Find Full Text PDF