Publications by authors named "Laura Chekli"

In this study, polyethylene glycol (PEG) was tested as an alternative polymer to improve the coating of TiO₂ particles onto optical fibres. The addition of PEG helped dispersing effectively the particles in solution to control their deposition and therefore achieving better properties of the coating film. Results showed that PEG increased the effectiveness of the coating and the prepared fibres showed better performance for the removal of methylene blue (MB).

View Article and Find Full Text PDF

Solutions to mitigate the reverse diffusion of solutes are critical to the successful commercialisation of the fertiliser drawn forward osmosis process. In this study, we proposed to combine a high performance fertiliser (i.e.

View Article and Find Full Text PDF

This study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor for real sewage employing baffles in the reactor. To study the biofouling development on forward osmosis membranes optical coherence tomography (OCT) technique was employed. On-line monitoring of biofilm growth on a flat sheet cellulose triacetate forward osmosis (CTA-FO) membrane was conducted for 21 days.

View Article and Find Full Text PDF

A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxicanoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100%) due to its higher molar mass and positive charge.

View Article and Find Full Text PDF

Re-thinking our approach to dealing with waste is one of the major challenges in achieving a more sustainable society. However, it could also generate numerous opportunities. Specifically, in the context of wastewater, nutrients, energy and water could be mined from it.

View Article and Find Full Text PDF

This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO and KHPO as draw solutes. Results showed that KHPO exhibited the lowest RSF in terms of molar concentration 19.1mM/(m.

View Article and Find Full Text PDF

The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS).

View Article and Find Full Text PDF

In this study, a side-stream anaerobic fertilizer-drawn forward osmosis (FDFO) and ultrafiltration (UF) membrane bioreactor (MBR) hybrid system was proposed and operated for 55days. The FDFO performance was first investigated in terms of flux decline with various fertilizers draw solution. Flux decline was very severe with all fertilizers due to the absence of aeration and the sticky property of sludge.

View Article and Find Full Text PDF

The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment.

View Article and Find Full Text PDF

Solar photocatalytic degradation of organic water pollutants can be used to degrade toxic organic pollutants in water. In this study, potassium titanate nanofibres were synthesized by an aqueous peroxide route at high pH and examined as photocatalysts for photodegradation of methylene blue (MB) using a solar simulator. Initially, MB was adsorbed on the surface of potassium polytitanates to achieve adsorption equilibrium before the photocatalysts were illuminated using solar simulator.

View Article and Find Full Text PDF

In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion.

View Article and Find Full Text PDF

Iron nanoparticles are becoming increasingly popular for the treatment of contaminated soil and groundwater; however, their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Assessing their stability under environmental conditions is crucial for determining their environmental fate. A multi-method approach (including different size-measurement techniques and the DLVO theory) was used to thoroughly characterise the behaviour of iron oxide nanoparticles (Fe2O3NPs) under environmentally relevant conditions.

View Article and Find Full Text PDF

Iron oxide nanoparticles are becoming increasingly popular for various applications including the treatment of contaminated soil and groundwater; however, their mobility and reactivity in the subsurface environment are significantly affected by their tendency to aggregate. One solution to overcome this issue is to coat the nanoparticles with dissolved organic matter (DOM). The advantages of DOM over conventional surface modifiers are that DOM is naturally abundant in the environment, inexpensive, non-toxic and readily adsorbed onto the surface of metal oxide nanoparticles.

View Article and Find Full Text PDF