is the most frequently mutated gene in human cancers. Most genomic alterations are missense mutations, which cause a loss of its tumour suppressor functions while providing mutant p53 (mut_p53) with oncogenic features (gain-of-function). Loss of p53 tumour suppressor functions alters the transcription of both protein-coding and non-protein-coding genes.
View Article and Find Full Text PDFBackground: Metastatic colorectal cancer (CRC) remains a deadly disease. Identifying locally advanced CRC patients with high risk of developing metastasis and improving outcome of metastatic CRC patients require discovering master regulators of metastasis. In this context, the non-coding part of the human genome is still largely unexplored.
View Article and Find Full Text PDFHigh-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology.
View Article and Find Full Text PDFRs3814113 is the single-nucleotide polymorphism (SNP) showing the strongest association with high-grade serous ovarian carcinoma (HGSOC) incidence and is located in an intergenic region about 44 kb downstream of basonuclin 2 (BNC2) gene. Lifetime number of ovulations is associated with increased risk to develop HGSOC, probably because of cell damage of extrauterine Müllerian epithelium by ovulation-induced oxidative stress. However, the impact of low-penetrance HGSOC risk alleles (e.
View Article and Find Full Text PDFIt is well established that osteoblasts, the key cells involved in bone formation during development and in adult life, secrete a number of glycoproteins harboring autocrine and paracrine functions. Thus, investigating the osteoblastic secretome could yield important information for the pathophysiology of bone. In the present study, we characterized for the first time the secretome of human Hobit osteoblastic cells.
View Article and Find Full Text PDFAPE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process.
View Article and Find Full Text PDFBackground: The identification of reliable markers for diagnosis of breast cancer has been thoroughly addressed by metabolic profiling using nuclear magnetic resonance (NMR) spectroscopy or imaging. Several clear diagnostic indicators have emerged using either in vitro analysis of tissue extracts, ex vivo analysis of biopsies or in vivo direct spectral observations. Most of the breast cancer characteristic metabolites could be assayed by mass spectrometry (MS) to exploit the superior sensitivity of this technique and therefore reduce the traumatic impact of current biopsy procedures.
View Article and Find Full Text PDFApurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is involved in base excision DNA repair (BER) and in regulation of gene expression, acting as a redox co-activator of several transcription factors. Recent findings highlight a novel role for APE1 in RNA metabolism, which is modulated by nucleophosmin (NPM1). The results reported in this article show that five lysine residues (K24, K25, K27, K31 and K32), located in the APE1 N-terminal unstructured domain, are involved in the interaction of APE1 with both RNA and NPM1, thus supporting a competitive binding mechanism.
View Article and Find Full Text PDFUnconjugated bilirubin (UCB) is a powerful antioxidant and a modulator of cell growth through the interaction with several signal transduction pathways. Although newborns develop a physiological jaundice, in case of severe hyperbilirubinemia UCB may become neurotoxic causing severe long-term neuronal damages, also known as bilirubin encephalopathy. To investigate the mechanisms of UCB-induced neuronal toxicity, we used the human neuroblastoma cell line SH-SY5Y as an in vitro model system.
View Article and Find Full Text PDFAPE1/Ref-1 (hereafter, APE1), a DNA repair enzyme and a transcriptional coactivator, is a vital protein in mammals. Its role in controlling cell growth and the molecular mechanisms that fine-tune its different cellular functions are still not known. By an unbiased proteomic approach, we have identified and characterized several novel APE1 partners which, unexpectedly, include a number of proteins involved in ribosome biogenesis and RNA processing.
View Article and Find Full Text PDFApurinic apyrimidinic endonuclease/redox effector factor 1 (APE1/Ref-1) protects cells from oxidative stress by acting as a central enzyme in base excision repair pathways of DNA lesions and through its independent activity as a redox transcriptional co-activator. Dysregulation of this protein has been associated with cancer development. At present, contrasting data have been published regarding the biological relevance of the two functions as well as the molecular mechanisms involved.
View Article and Find Full Text PDFAPE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection.
View Article and Find Full Text PDFUnconjugated bilirubin (UCB) is the major degradation product of the heme catabolism. A growing body of evidences suggests that UCB plays major biological effects by inhibiting cell proliferation in cancer cell lines and eliciting cell toxicity particularly in neurons and glial cells. Early molecular events responsible for bilirubin-induced cytotoxicity remain poorly understood.
View Article and Find Full Text PDFKnowledge of early molecular events occurring upon ischemia/reperfusion (I/R) during liver transplantation (LT) is of great importance to improve the therapeutic intervention of surgical treatment. However, nowadays, few data are available on early protein targets of I/R injury. To identify these proteins, we used a differential proteomics approach in the characterization human liver biopsies during I/R upon LT.
View Article and Find Full Text PDFInhibitors of histone deacetylases (HDACs) activate the sodium iodide symporter (NIS) expression in thyroid tumor cells. In this study, mechanisms accounting for these effects were investigated. Various human thyroid tumor cell lines (ARO, BCPAP, FRO, TPC-1) were treated with the HDAC inhibitors Na butyrate (NaB) and tricostatin A (TSA), and the effects on the expression of NIS and several thyroid-specific transcription factors together with the activity of NIS promoter were evaluated.
View Article and Find Full Text PDFOxidative stress is a major pathogenetic event occurring in several liver disorders and is a major cause of liver damage due to Ischemia/Reperfusion (I/R) during liver transplantation. While several markers of chronic oxidative stress are well known, early protein targets of oxidative injury are not well defined. In order to identify these proteins, we used a differential proteomics approach to HepG2 human liver cells treated for 10 min with 500 microM H(2)O(2).
View Article and Find Full Text PDFDynamic mechanical loading increases bone density and strength and promotes osteoblast proliferation, differentiation and matrix production, by acting at the gene expression level. Molecular mechanisms through which mechanical forces are conversed into biochemical signalling in bone are still poorly understood. A growing body of evidence point to extracellular nucleotides (i.
View Article and Find Full Text PDFOxidative stress is a major pathogenetic event occurring in several liver disorders ranging from metabolic to proliferative ones, and is a major cause of liver damage due to Ischemia/Reperfusion (I/R) during liver transplantation. The main sources of ROS are represented by mitochondria and cytocrome P450 enzymes in the hepatocyte, by Kupffer cells and by neutrophils. Cells are provided with efficient molecular strategies to strictly control the intracellular ROS level and to maintain the balance between oxidant and antioxidant molecules.
View Article and Find Full Text PDFThe lipid phosphatase, phosphatase and tensin homolog (PTEN), is a key element in controlling cell growth and survival and has a well established role as tumor suppressor protein in many neoplasia. Several data indicate that silencing of PTEN gene expression may be relevant in follicular thyroid cell transformation. Thus, in the present study regulation of PTEN gene expression in thyroid cells was investigated.
View Article and Find Full Text PDFExtracellular nucleotides exert an important role in controlling cell physiology by activating intracellular signalling cascades. Osteoblast HOBIT cells express P2Y(1) and P2Y(2) G-protein-coupled receptors, and respond to extracellular ATP by increasing cytosolic calcium concentrations. Early growth response protein 1 (Egr-1) is a C(2)H(2)-zinc-finger-containing transcriptional regulator responsible for the activation of several genes involved in the control of cell proliferation and apoptosis, and is thought to have a central role in osteoblast biology.
View Article and Find Full Text PDFFollowing the observation of the presence in mammalian nuclear extracts of a DNA binding activity quite specific for the single-stranded C-rich telomeric motif, we have isolated from the K562 human cell line by affinity chromatography and identified by mass spectrometry a number of proteins able to bind to this sequence. All of them belong to different heterogeneous nuclear ribonucleoprotein subgroups (hnRNP). Whereas many of them, namely hnRNP K, two isoforms of hnRNP I, and the factor JKTBP, appear to bind to this sequence with limited specificity after isolation, an isoform of hnRNP D (alias AUF1) and particularly hnRNP E1 (alias PCBP-1) show a remarkable specificity for the (CCCTAA)n repeated motif.
View Article and Find Full Text PDF