Publications by authors named "Laura Cazon"

The finding of a genotype-negative hypertrophic cardiomyopathy (HCM) pedigree with several affected members indicating a familial origin of the disease has driven this study to discover causative gene variants. Genetic testing of the proband and subsequent family screening revealed the presence of a rare variant in the MYBPC3 gene, c.3331-26T>G in intron 30, with evidence supporting cosegregation with the disease in the family.

View Article and Find Full Text PDF

Objectives: The prognostic value of genetic studies in cardiomyopathies is still controversial. Our objective was to evaluate the outcome of patients with cardiomyopathy with mutations in the converter domain of β myosin heavy chain (MYH7).

Methods: Clinical characteristics and survival of 117 affected members with mutations in the converter domain of MYH7 were compared with 409 patients described in the literature with mutations in the same region.

View Article and Find Full Text PDF

Background: MyBPC3 mutations are amongst the most frequent causes of hypertrophic cardiomyopathy, however, its prevalence varies between populations. They have been associated with mild and late onset disease expression. Our objectives were to establish the prevalence of MyBPC3 mutations and determine their associated clinical characteristics in our patients.

View Article and Find Full Text PDF

Aims: The E101K mutation in the alpha-cardiac actin gene (ACTC) has been associated with apical hypertrophic cardiomyopathy (HCM). As prominent trabeculations were described in some carriers, we screened for the E101K mutation in our index patients with HCM, dilated cardiomyopathy (DCM), or left ventricular non-compaction (LVNC).

Methods And Results: Clinical, echocardiographic, and genetic screening by restriction fragment length polymorphism of the ACTC E101K mutation in 247 families with HCM, DCM, or LVNC.

View Article and Find Full Text PDF

Introduction And Objectives: To determine the frequency of mutations in the beta-myosin heavy-chain gene (MYH7) in a cohort of patients with hypertrophic cardiomyopathy (HCM) and their families, and to investigate correlations between genotype and phenotype.

Methods: Single-strand conformation polymorphism analysis and sequencing of fragments with abnormal MYH7 gene mobility were carried out in 128 consecutive index patients with HCM. The phenotypes of patients with and without mutations were compared and the phenotypes of identified families were recorded.

View Article and Find Full Text PDF