Publications by authors named "Laura Castellano"

Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers.

View Article and Find Full Text PDF

The European amphioxus (Branchiostoma lanceolatum) is a member of the chordate subphylum Cephalochordata, and, as such, a key model organism for providing insights into the origin and evolution of vertebrates. Despite its significance and global distribution, detailed characterizations of natural populations of cephalochordates are still very limited. This study investigates the abundance, habitat, and spawning behavior of amphioxus in the North Adriatic Sea.

View Article and Find Full Text PDF

The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact.

View Article and Find Full Text PDF

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects.

View Article and Find Full Text PDF

Cutaneous wound healing is a complex process that leads the skin reparation with the formation of scar tissue that typically lacks skin appendages. This fact drives us to find new strategies to improve regenerative healing of the skin. This study outlines, the contribution of colloidal silica particles and oligourethane crosslinking on the collagen material properties and the effect on skin wound healing in rats.

View Article and Find Full Text PDF

We investigate the effects of crowding on the conformations and assembly of confined, highly charged, and thick polyelectrolyte brushes in the osmotic regime. Particle tracking experiments on increasingly dense suspensions of colloids coated with ultralong double-stranded DNA (dsDNA) fragments reveal nonmonotonic particle shrinking, aggregation, and re-entrant ordering. Theory and simulations show that aggregation and re-entrant ordering arise from the combined effect of shrinking, which is induced by the osmotic pressure exerted by the counterions absorbed in neighbor brushes and of a short-range attractive interaction competing with electrostatic repulsion.

View Article and Find Full Text PDF

Aim: To investigate the rate of antibiotic resistance and its main risk factors in a population of patients with diabetic foot infection (DFI) during the COVID-19 pandemic, in comparison with the population of 2019.

Methods: Two hundred and twenty-five patients with DFI were admitted in a tertiary care center from January 2019 to December 2020. Antibiotic resistance was evaluated by microbiological examination of soft tissues' or bone's biopsy.

View Article and Find Full Text PDF

Wheat starch is composed of two glucose polymers, amylose and amylopectin. Although several starch synthases are responsible for its synthesis, only the waxy protein is associated with the amylose synthesis. The waxy protein composition of 45 Spanish common wheat landraces from Andalusia (southern Spain) was evaluated.

View Article and Find Full Text PDF

The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored.

View Article and Find Full Text PDF

Objective: Ultrasound features of granulosa cell tumors of the ovary are still poorly defined. The aim of this study is to widen current knowledge on the role of sonographic gray scale and pattern recognition in the characterization of these tumors and to compare the ultrasound characteristics of primary diagnosis and recurrences.

Methods: Transvaginal ultrasound images of primary diagnosis or recurrences of histologically-confirmed granulosa cell tumors of the ovary were retrospectively retrieved from a dedicated database designed for the collection of clinical and ultrasound data from January 2001 to January 2019.

View Article and Find Full Text PDF

Immunomodulatory biomaterials have emerged as a promising approach to engineer wound healing. To achieve this task, the bioactivity of the biomaterials and an easy application are two key desirable characteristics. This work reports an injectable gel system containing immune cells primed for wound healing.

View Article and Find Full Text PDF

Trichomonas vaginalis is an extracellular parasite that colonizes the human urogenital tract leading to trichomoniasis, the most common sexually-transmitted non-viral disease worldwide. The immune response plays a critical role in the host defense against this parasite. Trichomonas' DNA contains unmethylated CpG motifs (CpGDNA) that in other microorganisms act as modulators of the immune response.

View Article and Find Full Text PDF

Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism.

View Article and Find Full Text PDF

Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel.

View Article and Find Full Text PDF

Hsp104 is an AAA+ protein disaggregase with powerful amyloid-remodeling activity. All nonmetazoan eukaryotes express Hsp104 while eubacteria express an Hsp104 ortholog, ClpB. However, most studies have focused on Hsp104 from Saccharomyces cerevisiae and ClpB orthologs from two eubacterial species.

View Article and Find Full Text PDF

The polarization of macrophages M0 to M1 or M2 using molecules embedded in matrices and hydrogels is an active field of study. The design of biomaterials capable of promoting polarization has become a paramount need nowadays, since in the healing process macrophages M1 and M2 modulate the inflammatory response. In this work, several immunocytochemistry and ELISA tests strongly suggest the achievement of polarization using collagen-based membranes crosslinked with tri-functionalized oligourethanes and coated with silica.

View Article and Find Full Text PDF

Background: The advent of flexible CO2 laser fiber to gynecology arena might represent a turning point in the use of laser energy on a large-scale basis in gynecological surgery. However, there might be some concerns regarding the degree of surgical skills required to use the flexible system. The purpose of our study is to evaluate whether flexible CO2 laser fiber is technically accessible.

View Article and Find Full Text PDF

In this work, hydrolysates of extracellular matrix (hECM) were obtained from rat tail tendon (TR), bovine Achilles tendon (TAB), porcine small intestinal submucosa (SIS) and bovine pericardium (PB), and they were polymerized to generate ECM hydrogels. The composition of hECM was evaluated by quantifying the content of sulphated glycosaminoglycans (sGAG), fibronectin and laminin. The polymerization process, structure, physicochemical properties, in vitro degradation and biocompatibility were studied and related to their composition.

View Article and Find Full Text PDF

This paper reports the structure-property relationship of novel biomedical hydrogels derived from collagen, water-soluble oligourethanes, and silica. The molecular weight (MW) of oligourethanes, synthesized from polyoxyethylene diol and hexamethylene, l-lysine, isophorone or trimethylhexamethylene diisocyanates (P(HDI), P(LDI), P(IPDI) and P(TMDI), respectively), is determined by the chemical structure of the starting aliphatic diisocyanate. Thus, the collagen polymerization process and both the characteristics and mechanics of the formed three-dimensional (3D) network had a direct relation with the oligourethane MW.

View Article and Find Full Text PDF

The extracellular matrix molecules remaining in bioscaffolds derived from decellularized xenogeneic tissues appear to be important for inducing cell functions conducting tissue regeneration. Here, we studied whether decellularization methods, that is, detergent Triton X-100 (TX) alone and TX combined with reversible alkaline swelling (STX), applied to bovine pericardial tissue, could affect the bioscaffold components. The in vitro macrophage response, subdermal biodegradation, and cell infiltration were also studied.

View Article and Find Full Text PDF

This paper reports a new method to modify hydrogels derived from the acellular extracellular matrix (ECM) and consequently to improve their properties. The method is comprised of the combination of liquid precursors derived from hydrolyzed acellular small intestinal submucosa (hECM) and water-soluble oligourethanes that bear protected isocyanate groups, synthesized from poly(ethylene glycol) (PEG) and hexamethylene diisocyanate (HDI). The results demonstrate that the reactivity of oligourethanes, along with their water solubility, properly induce simultaneously the polymerization of type I collagen and its crosslinking.

View Article and Find Full Text PDF

Semen harbors amyloid fibrils formed by proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) that potently enhance HIV infectivity. Amyloid but not soluble forms of these peptides enhance HIV infection. Thus, agents that remodel these amyloid fibrils could prevent HIV transmission.

View Article and Find Full Text PDF

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils.

View Article and Find Full Text PDF

Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast.

View Article and Find Full Text PDF