Background: Early prediction of non-invasive respiratory therapy (NIRT) failure is crucial to avoid needless prolongation of respiratory support and delayed endotracheal intubation. Data comparing the predictive value of oxygenation indices (OI) in COVID-19 receiving NIRT are scant. The aim of this monocentric retrospective study of prospectively collected data was to assess the effectiveness of different OI in predicting NIRT outcome at baseline (t0), 12 h (t12) and 24 h (t24) of treatment in hypoxemic patients with COVID-19-related pneumonia, managed in a Pulmonary Intermediate Care Unit (October 2020-June 2021).
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is characterized by resistance to chemotherapy and a poor prognosis. Therefore, treatments that can effectively suppress tumor growth are urgently needed. Aberrant activation of hedgehog (HH) signaling has been implicated in several cancers, including those of the hepatobiliary tract.
View Article and Find Full Text PDFTargeted therapies against components of the mitogen-activated protein kinase (MAPK) pathway and immunotherapies, which block immune checkpoints, have shown important clinical benefits in melanoma patients. However, most patients develop resistance, with consequent disease relapse. Therefore, there is a need to identify novel therapeutic approaches for patients who are resistant or do not respond to the current targeted and immune therapies.
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is a poorly treatable type of cancer and, along with hepatocellular carcinoma (HCC), is the predominant type of primitive liver cancer in adults. The lack of understanding of CCA biology has slowed down the identification of novel targets and the development of effective treatments. While tumors share some general characteristics, detailed knowledge of specific features is essential for the development of effectively tailored therapeutic approaches.
View Article and Find Full Text PDFDespite the development of new targeted and immune therapies, the prognosis of metastatic melanoma remains bleak. Therefore, it is critical to better understand the mechanisms controlling advanced melanoma to develop more effective treatment regimens. Hedgehog/GLI (HH/GLI) signaling inhibitors targeting the central pathway transducer Smoothened (SMO) have shown to be clinical efficacious in skin cancer; however, several mechanisms of non-canonical HH/GLI pathway activation limit their efficacy.
View Article and Find Full Text PDFThe DNA damage response (DDR) is a well-coordinated cellular network activated by DNA damage. The unravelling of the key players in DDR, their specific inactivation in different tumor types and the synthesis of specific chemical inhibitors of DDR represent a new hot topic in cancer therapy. In this article, we will review the importance of DDR in lymphoma development and how this can be exploited therapeutically.
View Article and Find Full Text PDFMucinous epithelial ovarian cancer (mEOC) is a rare subset of epithelial ovarian cancer. When diagnosed at a late stage, its prognosis is very poor, as it is quite chemo-resistant. To find new therapeutic options for mEOC, we performed high-throughput screening using a siRNA library directed against human protein kinases in a mEOC cell line, and polo-like kinase1 (PLK1) was identified as the kinase whose downregulation interfered with cell proliferation.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPurpose: This study was aimed at investigating whether the PPARγ agonist pioglitazone-given in combination with trabectedin-is able to reactivate adipocytic differentiation in myxoid liposarcoma (MLS) patient-derived xenografts, overcoming resistance to trabectedin.
Experimental Design: The antitumor and biological effects of trabectedin, pioglitazone, and the combination of the two drugs were investigated in nude mice bearing well-characterized MLS xenografts representative of innate or acquired resistance against trabectedin. Pioglitazone and trabectedin were given by daily oral and weekly i.
Background: Myxoid liposarcoma is a histological subtype of liposarcoma particularly sensitive to trabectedin. In clinical use this drug does not cause cumulative toxicity, allowing prolonged treatment, generally until disease progression. No other effective therapies are available for trabectedin-resistant patients.
View Article and Find Full Text PDFPurpose: Transcription factors are commonly deregulated in cancer, and they have been widely considered as difficult to target due to their nonenzymatic mechanism of action. Altered expression levels of members of the ETS-transcription factors are often observed in many different tumors, including lymphomas. Here, we characterized two small molecules, YK-4-279 and its clinical derivative, TK-216, targeting ETS factors via blocking the protein-protein interaction with RNA helicases, for their antilymphoma activity.
View Article and Find Full Text PDFThe DNA damage response (DDR) kinases ATR, Chk1, and Wee1 play vital roles in the response to replication stress and in maintaining cancer genomic stability. Inhibitors of these kinases are currently under clinical investigation. Mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL) are aggressive lymphomas whose clinical outcome is still largely unsatisfactory.
View Article and Find Full Text PDFBackground: The outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability.
View Article and Find Full Text PDFOvarian mucinous tumors represent a group of rare neoplasms with a still undefined cell of origin but with an apparent progression from benign to borderline to carcinoma. Even though these tumors are different from the other histological subtypes of epithelial ovarian neoplasms, they are still treated with a similar chemotherapeutic approach. Here, we review its pathogenesis, molecular alterations, (differential) diagnosis, clinical presentation and current treatment, and how recent molecular and biological information on this tumor might lead to better and more specific clinical management of patients with mucinous ovarian carcinoma.
View Article and Find Full Text PDFBackground: Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with an unfavorable clinical course. Besides deregulation of the cell cycle, B cell receptor (BCR) signaling, essential for MCL proliferation and survival, is also often deregulated due to constitutive activation of Bruton's tyrosine kinase (BTK). The BTK inhibitor ibrutinib has been approved as a therapy for refractory MCL, and while it shows some clinical activity, patients frequently develop primary or secondary ibrutinib resistance and have very poor outcomes after relapsing following ibrutinib treatment.
View Article and Find Full Text PDFActivation of the PI3K/mTOR signaling pathway is recurrent in different lymphoma types, and pharmacologic inhibition of the PI3K/mTOR pathway has shown activity in lymphoma patients. Here, we extensively characterized the and activity and the mechanism of action of PQR309 (bimiralisib), a novel oral selective dual PI3K/mTOR inhibitor under clinical evaluation, in preclinical lymphoma models. This study included preclinical activity screening on a large panel of cell lines, both as single agent and in combination, validation experiments on models and primary cells, proteomics and gene-expression profiling, and comparison with other signaling inhibitors.
View Article and Find Full Text PDFCancer Treat Rev
November 2017
Over the last decade the unravelling of the molecular mechanisms of the DNA damage response pathways and of the genomic landscape of human tumors have paved the road to new therapeutic approaches in oncology. It is now clear that tumors harbour defects in different DNA damage response steps, mainly signalling and repair, rendering them more dependent on the remaining pathways. We here focus on the proteins ATM, ATR, CHK1 and WEE1, reviewing their roles in the DNA damage response and as targets in cancer therapy.
View Article and Find Full Text PDFThe combination of erlotinib with gemcitabine is one of the most promising therapies for advanced pancreatic cancer. Aiming at optimizing this combination, we analyzed in detail the response to sequential treatments with erlotinib → gemcitabine and gemcitabine → erlotinib with an 18 h interval, adopting a previously established experimental/computational approach to quantify the cytostatic and cytotoxic effects at G1, S and G2M checkpoints. This assessment was achieved by contemporary fits of flow cytometric and time-lapse experiments in two human pancreatic cancer cell lines (BxPC-3 and Capan-1) with a mathematical model reproducing the fluxes of cells through the cycle during and after treatment.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the chromosomal translocation t(11;14) that leads to constitutive expression of cyclin D1, a master regulator of the G1-S phase. Chk1 inhibitors have been recently shown to be strongly effective as single agents in MCL. To investigate molecular mechanisms at the basis of Chk1 inhibitor activity, a MCL cell line resistant to the Chk1 inhibitor PF-00477736 (JEKO-1 R) was obtained and characterized.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive, incurable disease, characterized by a deregulated cell cycle. Chk1 and Wee1 are main regulators of cell cycle progression and recent data on solid tumors suggest that simultaneous inhibition of these proteins has a strong synergistic cytotoxic effect. The effects of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) have been herein investigated in a large panel of mature B-cell lymphoma cell lines.
View Article and Find Full Text PDFAllosteric targeting of protein kinases via displacement of the structural αC helix with type III allosteric inhibitors is currently gaining a foothold in drug discovery. Recently, the first crystal structure of CDK2 with an open allosteric pocket adjacent to the αC helix has been described, prospecting new opportunities to design more selective inhibitors, but the structure has not yet been exploited for the structure-based design of type III allosteric inhibitors. In this work we report the results of a virtual screening campaign that resulted in the discovery of the first-in-class type III allosteric ligands of CDK2.
View Article and Find Full Text PDFChk1 is implicated in several checkpoints of the cell cycle acting as a key player in the signal transduction pathway activated in response to DNA damage and crucial for the maintenance of genomic stability. Chk1 also plays a role in the mitotic spindle checkpoint, which ensures the fidelity of mitotic segregation during mitosis, preventing chromosomal instability and aneuploidy. Mad2 is one of the main mitotic checkpoint components and also exerts a role in the cellular response to DNA damage.
View Article and Find Full Text PDFTargeting Chk1 protein kinase can enhance the antitumor effects of radio- and chemotherapy. Recent evidence disclosed a role of Chk1 in unperturbed cell proliferation and survival, implying that Chk1 inhibitors could also be effective as single agents in tumors with a specific genetic background. To identify genes in synthetic lethality with Chk1, we did a high-throughput screening using a siRNA library directed against 719 human protein kinases in the human ovarian cancer cell line OVCAR-5, resistant to Chk1 inhibitors.
View Article and Find Full Text PDF