Publications by authors named "Laura Caramazza"

Cellular motility is essential for making and maintaining multicellular organisms throughout their lifespan. Migrating cells can move either individually or collectively by a crawling movement that links the cytoskeletal activity to the adhesion surface. In vitro stimulation by electric fields can be achieved by direct, capacitive or inductive coupled setups.

View Article and Find Full Text PDF

The use of biocompatible scaffolds combined with the implantation of neural stem cells, is increasingly being investigated to promote the regeneration of damaged neural tissue, for instance, after a Spinal Cord Injury (SCI). In particular, aligned Polylactic Acid (PLA) microfibrils' scaffolds are capable of supporting cells, promoting their survival and guiding their differentiation in neural lineage to repair the lesion. Despite its biocompatible nature, PLA is an electrically insulating material and thus it could be detrimental for increasingly common scaffolds' electric functionalization, aimed at accelerating the cellular processes.

View Article and Find Full Text PDF

Electropulsation has become a powerful technological platform for electromanipulation of cells and tissues for various medical and biotechnological applications, but the molecular changes that underlay the very first initiation step of this process have not been experimentally observed. Here, we endowed a wide-field Coherent anti-Stokes Raman Scattering platform with an ad-hoc electromagnetic exposure device and we demonstrated, using artificial lipid vesicles (i.e.

View Article and Find Full Text PDF

Electroporation is a well-established technique used to stimulate cells, enhancing membrane permeability by inducing reversible membrane pores. In the absence of experimental observation of the dynamics of pore creation, molecular dynamics studies provide the molecular-level evidence that the electric field promotes pore formation. Although single steps in the pore formation process are well assessed, a kinetic model representing the mathematical description of the electroporation process, is lacking.

View Article and Find Full Text PDF

Stimuli-sensitive nanocarriers have recently been developed as a powerful tool in biomedical applications such as drug delivery, detection, and gene transfer techniques. Among the external triggers investigated, low intensity magnetic fields represent a non-invasive way to remotely control the release of compounds from a magneto-sensitive carrier. Magnetoliposomes (MLs), i.

View Article and Find Full Text PDF

Non-contact galvanotaxis as a way to drive the cells migration could be a promising tool for a variety of biomedical applications, such as wound healing control, avoiding the interaction between electrodes and cell cultures. To this regard, the efficacy of this electrical stimulus application has to be deeper studied to control physiological migratory phenomena in a remote way.Aim of this work is to provide an experimental investigation on the mobility of cells exposed to a static electric field in a "noncontact" mode, supported by a suitable modeling of the electric field distribution inside the experimental setup.

View Article and Find Full Text PDF

The increasing interest toward biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes of liposomes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility to control the release from liposome vesicles, using nanosecond pulsed electric fields characterized by a 10 ns duration and intensity in the order of MV/m.

View Article and Find Full Text PDF

The increasing interest towards biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. Common examples of electro-sensitive materials include phospholipids that can be used to design nano-sized vesicles suitable for external electric actuation. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale.

View Article and Find Full Text PDF