Herein, we performed a virtual screening study to discover new scaffolds for small molecule-based ligands of the immune checkpoint lymphocyte-activation gene 3 (LAG-3). Molecular dynamics (MD) simulations using the LAG-3 structure revealed two putative binding sites for small molecules: the antibody interface and the lipophilic canyon. A 3D pharmacophore screening resulted in the identification of potential ligands for these binding sites and afforded a library of 25 compounds.
View Article and Find Full Text PDFLymphocyte activation gene 3 (LAG-3) is an inhibitory immune checkpoint crucial for suppressing the immune response against cancer. Blocking LAG-3 interactions enables T cells to recover their cytotoxic capabilities and diminishes the immunosuppressive effects of regulatory T cells. A cyclic peptide (Cys-Val-Pro-Met-Thr-Tyr-Arg-Ala-Cys, disulfide bridge: 1-9) was recently reported as a LAG-3 inhibitor.
View Article and Find Full Text PDFInducible T cell co-stimulator (ICOS) is a positive immune checkpoint receptor expressed on the surface of activated T cells, which could promote cell function after being stimulated with ICOS ligand (ICOS-L). Although clinical benefits have been reported in the ICOS modulation-based treatment for cancer and autoimmune disease, current modulators are restricted in biologics, whereas ICOS-targeted small molecules are lacking. To fill this gap, we performed an affinity selection mass spectrometry (ASMS) screening for ICOS binding using a library of 15,600 molecules.
View Article and Find Full Text PDFInducible T cell co-stimulator (ICOS) is a positive immune checkpoint receptor expressed on the surface of activated T cells, which could promote cell function after being stimulated with ICOS ligand (ICOS-L). Although clinical benefits have been reported in the ICOS modulation-based treatment for cancer and autoimmune disease, current modulators are restricted in biologics, whereas ICOS-targeted small molecules are lacking. To fill this gap, we performed an affinity selection mass spectrometry (ASMS) screening for ICOS binding using a library of 15,600 molecules.
View Article and Find Full Text PDFThe revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs.
View Article and Find Full Text PDFCompared to small molecules and antibodies, cyclic peptides exhibit unique biochemical and therapeutic attributes in the realm of pharmaceutical applications. The interaction between the inducible costimulator (ICOS) and its ligand (ICOSL) plays a key role in T-cell differentiation and activation. ICOS/ICOSL inhibition results in a reduction in the promotion of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors.
View Article and Find Full Text PDFThere are currently no small molecules clinically approved as immune checkpoint modulators. Besides possessing oral bioavailability, cell-penetrating capabilities and enhanced tumor penetration compared to monoclonal antibodies (mAbs), small molecules are amenable to pharmacokinetic optimization, which allows adopting flexible dosage regimens that may avoid immune-related adverse events associated with mAbs. The interaction of inducible co-stimulator (ICOS) with its ligand (ICOS-L) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions.
View Article and Find Full Text PDFIntroduction: Little is known about the molecular profiling associated with the effect of cladribine in patients with multiple sclerosis (MS). Here, we aimed first to characterize the transcriptomic and proteomic profiles induced by cladribine in blood cells, and second to identify potential treatment response biomarkers to cladribine in patients with MS.
Methods: Gene, protein and microRNA (miRNA) expression profiles were determined by microarrays (genes, miRNAs) and mass spectrometry (proteins) in peripheral blood mononuclear cells (PBMCs) from MS patients after treatment with cladribine in its active and inactive forms.
The gut microbiota and its derived metabolites greatly impact the host immune system, both innate and adaptive responses. Gut dysbiosis and altered levels of microbiota-derived metabolites have been described in several immune-related and immune-mediated diseases such as intestinal bowel disease, multiple sclerosis, or colorectal cancer. Gut microbial-derived metabolites are synthesized from dietary compounds ingested by the host or host-produced metabolites, and additionally, some bacterial products can be synthesized de novo.
View Article and Find Full Text PDFThe pathogenic role of the interleukin 21 (IL-21) in different autoimmune diseases, such as multiple sclerosis (MS), has been extensively studied. However, its pleiotropic nature makes it a cytokine that may exhibit different activity depending on the immunological stage of the disease. In this study, we developed a gene therapy strategy to block the interaction between IL-21 and its receptor (IL-21R) by using adeno-associated vectors (AAV) encoding a new soluble cytokine receptor (sIL21R) protein.
View Article and Find Full Text PDFCladribine is a synthetic deoxyadenosine analogue with demonstrated efficacy in patients with relapsing-remitting multiple sclerosis (MS). The main mechanism of action described for cladribine is the induction of a cytotoxic effect on lymphocytes, leading to a long-term depletion of peripheral T and B cells. Besides lymphocyte toxicity, the mode of action may include immunomodulatory mechanisms affecting other cells of the immune system.
View Article and Find Full Text PDFGut microbiome studies in multiple sclerosis (MS) patients are unravelling some consistent but modest patterns of gut dysbiosis. Among these, a significant decrease of Clostridia cluster IV and XIVa has been reported. In the present study, we investigated the therapeutic effect of a previously selected mixture of human gut-derived 17 Clostridia strains, which belong to Clostridia clusters IV, XIVa, and XVIII, on the clinical outcome of experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFA growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive.
View Article and Find Full Text PDFChitinase 3-like 1 (CHI3L1) is known to play a role as prognostic biomarker in the early stages of multiple sclerosis (MS), and patients with high cerebrospinal fluid CHI3L1 levels have an increased risk for the development of neurological disability. Here, we investigated its potential neurotoxic effect by adding recombinant CHI3L1 in vitro to primary cultures of mouse cortical neurons and evaluating both neuronal functionality and survival by immunofluorescence. CHI3L1 induced a significant neurite length retraction after 24 and 48 hours of exposure and significantly reduced neuronal survival at 48 hours.
View Article and Find Full Text PDFPrimary progressive multiple sclerosis is a poorly understood disease entity with no specific prognostic biomarkers and scarce therapeutic options. We aimed to identify disease activity biomarkers in multiple sclerosis by performing an RNA sequencing approach in peripheral blood mononuclear cells from a discovery cohort of 44 untreated patients with multiple sclerosis belonging to different clinical forms and activity phases of the disease, and 12 healthy control subjects. A validation cohort of 58 patients with multiple sclerosis and 26 healthy control subjects was included in the study to replicate the RNA sequencing findings.
View Article and Find Full Text PDFPrevious studies in experimental autoimmune encephalomyelitis (EAE) models have shown that some probiotic bacteria beneficially impact the development of this experimental disease. Here, we tested the therapeutic effect of two commercial multispecies probiotics-Lactibiane iki and Vivomixx-on the clinical outcome of established EAE. Lactibiane iki improves EAE clinical outcome in a dose-dependent manner and decreases central nervous system (CNS) demyelination and inflammation.
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) are secreted proteins that belong to the transforming growth factor-β superfamily. In the adult brain, they modulate neurogenesis, favor astrogliogenesis, and inhibit oligodendrogenesis. Because BMPs may be involved in the failure of remyelination in multiple sclerosis (MS), we characterized the expression of BMP-2, BMP-4, BMP-5, and BMP-7; BMP type II receptor (BMPRII); and phosphorylated SMAD (pSMAD) 1/5/8 in lesions of MS and other demyelinating diseases.
View Article and Find Full Text PDFThe commensal microbiota has emerged as an environmental risk factor for multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE) models have shown that the commensal microbiota is an essential player in triggering autoimmune demyelination. Likewise, the commensal microbiota modulates the host immune system, alters the integrity and function of biological barriers and has a direct effect on several types of central nervous system (CNS)-resident cells.
View Article and Find Full Text PDFBrain Behav Immun
February 2018
Bone morphogenetic proteins (BMPs) are growth factors that represent the largest subgroup of signalling ligands of the transforming growth factor beta (TGF-β) superfamily. Their participation in the proliferation, survival and cell fate of several cell types and their involvement in many pathological conditions are now well known. BMP expression is altered in multiple sclerosis (MS) patients, suggesting that BMPs have a role in the pathogenesis of this disease.
View Article and Find Full Text PDFSemaphorin 7A (sema7A) is classified as an immune semaphorin with dual functions in the immune system and in the central nervous system (CNS). These molecules are of interest due to their potential role in multiple sclerosis (MS), which is a chronic demyelinating and neurodegenerative disease of autoimmune origin. In this study, we elucidated the role of sema7A in neuroinflammation using both in vitro and in vivo experimental models.
View Article and Find Full Text PDF