Starting from 1952 C.E. more than 540 atmospheric nuclear weapons tests (NWT) were conducted in different locations of the Earth.
View Article and Find Full Text PDFThe study of airborne chemical markers is crucial for identifying sources of aerosols, and their atmospheric processes of transport and transformation. The investigation of free amino acids and their differentiation between the L- and D- enantiomers are even more important to understand their sources and atmospheric fate. Aerosol samples were collected with a high-volume sampler with cascade impactor at Mario Zucchelli Station (MZS) on the coast of the Ross Sea (Antarctica) for two summer campaigns (2018/19 and 2019/20).
View Article and Find Full Text PDFTen years of data of biogenic aerosol (methane sulfonic acid, MSA, and non-sea salt sulfate, nssSO) collected at Concordia Station in the East Antarctic plateau (75° 06' S, 123° 20' E) are interpreted as a function of the Southern Annular Mode (SAM), Chlorophyll-a concentration (Chl-a; a proxy for phytoplankton biomass), sea ice extent and area. It is possible to draw three different scenarios that link these parameters in early, middle, and late summer. In early summer, the biogenic aerosol is significantly correlated to sea ice retreats through the phytoplankton biomass increases.
View Article and Find Full Text PDFShip traffic, population, infrastructure development, and mining activities are expected to increase in the Arctic due to its rising temperatures. This is expected to produce a major impact on aerosol composition. Metals contained in atmospheric particles are powerful markers and can be extremely helpful to gain insights on the different aerosol sources.
View Article and Find Full Text PDFLead (Pb) concentration and Pb isotope ratios have been determined in 109 snow pit samples collected at Dome C, on the East Antarctic Plateau, corresponding to the period 1971-2017. The Pb concentration was 8.2 ± 1.
View Article and Find Full Text PDFAn inductively coupled plasma sector field mass spectrometer (ICP-SFMS) was used to develop an analytical method for the fast determination of Na, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb in Arctic size-segregated aerosol samples (PM), after microwave acidic digestion. The ICP-SFMS was coupled with a microflow nebulizer and a desolvation system for the sample introduction, which reduced the isobaric interferences due to oxides and the required volume of sample solutions, compared to the usual nebulization chamber methods. With its very low limit of detection, and taking into account the level of blanks, this method allowed the quantification of many metals in very low concentration.
View Article and Find Full Text PDFFive snow pits and five firn cores were sampled during the 2003-2004 Italian Antarctic Campaign at Talos Dome (East Antarctica), where a deep ice core (TALDICE, TALos Dome Ice CorE, 1650m depth) was drilled in 2005-2008 and analyzed for ionic content. Particular attention is spent in applying decontamination procedures to the firn cores, as core sections were stored for approximately 10years before analysis. By considering the snow pit samples to be unperturbed, the comparison with firn core samples from the same location shows that ammonium, nitrate and MSA are affected by storage post-depositional losses.
View Article and Find Full Text PDF