Objectives: Prediction of late-onset sepsis (onset beyond day 3 of life) in preterm infants, based on multiple patient monitoring signals 24 hours before onset.
Design: Continuous high-resolution electrocardiogram and respiration (chest impedance) data from the monitoring signals were extracted and used to create time-interval features representing heart rate variability, respiration, and body motion. For each infant with a blood culture-proven late-onset sepsis, a Cultures, Resuscitation, and Antibiotics Started Here moment was defined.
Aim: To address alarm fatigue, a new alarm management system which ensures a quicker delivery of alarms together with waveform information on nurses' handheld devices was implemented and settings optimised. The effects of this clinical implementation on alarm rates and nurses' responsiveness were measured in an 18-bed single family rooms neonatal intensive care unit (NICU).
Methods: The technical implementation of the alarm management system was followed by clinical workflow optimisation.
Annu Int Conf IEEE Eng Med Biol Soc
July 2020
This paper presents a simple yet novel method to estimate the heart frequency (HF) of neonates directly from the ECG signal, instead of using the RR-interval signals as generally done in clinical practices. From this, the heart rate (HR) can be derived. Thus, we avoid the use of peak detectors and the inherent errors that come with them.
View Article and Find Full Text PDF