Publications by authors named "Laura C Whitmore"

is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism and play a prominent role in tissue destruction and disease. Recently, we demonstrated that exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation.

View Article and Find Full Text PDF

Francisella tularensis infects several cell types including neutrophils, and aberrant neutrophil accumulation contributes to tissue destruction during tularaemia. We demonstrated previously that F. tularensis strains Schu S4 and live vaccine strain markedly delay human neutrophil apoptosis and thereby prolong cell lifespan, but the bacterial factors that mediate this aspect of virulence are undefined.

View Article and Find Full Text PDF

infects the human stomach and causes a spectrum of disease that includes gastritis, peptic ulcers, and gastric adenocarcinoma. A chronic, neutrophil-rich inflammatory response characterizes this infection. It is established that stimulates neutrophil chemotaxis and a robust respiratory burst, but other aspects of this interaction are incompletely defined.

View Article and Find Full Text PDF

Polymorphonuclear leukocytes (PMN) achieve an intermediate or primed state of activation following stimulation with certain agonists. Primed PMN have enhanced responsiveness to subsequent stimuli, which can be beneficial in eliminating microbes but may cause host tissue damage in certain disease contexts, including sepsis. As PMN priming by TLR4 agonists is well described, we hypothesized that ligation of TLR2/1 or TLR2/6 would prime PMN.

View Article and Find Full Text PDF

Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation.

View Article and Find Full Text PDF

The systemic inflammatory response syndrome (SIRS) is a clinical condition occurring in intensive care unit patients as a consequence of both infectious and noninfectious insults. The mechanisms underlying resolution of SIRS are not well characterized. NOX2 (NADPH oxidase 2)-derived reactive oxygen species are critical for killing of certain pathogens by polymorphonuclear leukocytes (PMN).

View Article and Find Full Text PDF