Publications by authors named "Laura C Garvey"

Background: This study was performed to determine whether in-laboratory specimen radiography reduces turnaround time or block utilization in surgical pathology.

Methods: Specimens processed during a 48-day trial of an in-lab cabinet radiography device (Faxitron) were compared to a control group of specimens imaged in the mammography suite during a prior 1-year period, and to a second group of specimens not undergoing imaging of any type.

Results: Cases imaged in the mammography suite had longer turnaround time than cases not requiring imaging (by 1.

View Article and Find Full Text PDF

BJ-48, a serine protease from the venom of Bothrops jararacussu, was purified to homogeneity using affinity chromatography on p-aminobenzamidine-agarose followed by HPLC gel filtration. BJ-48 presented 52kDa by SDS-PAGE analysis and 48,036Da by electron spray mass spectrometry. The enzyme was shown to be highly glycosylated with 42% of N-linked carbohydrates composed of Fuc(1):GalN(4):GlcN(5):Gal(1):Man(2) and a high content of sialic acid residues (8-12%).

View Article and Find Full Text PDF

Thrombin is a Na(+)-activated, allosteric serine protease that plays multiple functional roles in blood pathophysiology. Binding of Na(+) is the major driving force behind the procoagulant, prothrombotic and signaling functions of the enzyme. This review summarizes our current understanding of the molecular basis of thrombin allostery with special emphasis on the kinetic aspects of Na(+) activation.

View Article and Find Full Text PDF

The kinetic mechanism of Na(+) binding to thrombin was resolved by stopped-flow measurements of intrinsic fluorescence. Na(+) binds to thrombin in a two-step mechanism with a rapid phase occurring within the dead time of the spectrometer (<0.5 ms) followed by a single-exponential slow phase whose k(obs) decreases hyperbolically with increasing [Na(+)].

View Article and Find Full Text PDF

The activating effect of Na(+) on thrombin is allosteric and depends on the conformational transition from a low activity Na(+)-free (slow) form to a high activity Na(+)-bound (fast) form. The structures of these active forms have been solved. Recent structures of thrombin obtained in the absence of Na(+) have also documented inactive conformations that presumably exist in equilibrium with the active slow form.

View Article and Find Full Text PDF