This article reviews the mechanisms through which molecules adsorbed to the surfaces of semiconductor nanocrystals, quantum dots (QDs), influence the pathways for and dynamics of intra- and interband exciton relaxation in these nanostructures. In many cases, the surface chemistry of the QDs determines the competition between Auger relaxation and electronic-to-vibrational energy transfer in the intraband cooling of hot carriers, and between electron or hole-trapping processes and radiative recombination in relaxation of band-edge excitons. The latter competition determines the photoluminescence quantum yield of the nanocrystals, which is predictable through a set of mostly phenomenological models that link the surface coverage of ligands with specific chemical properties to the rate constants for nonradiative exciton decay.
View Article and Find Full Text PDFA combination of FT-IR, (1)H NMR, nuclear Overhauser effect (NOESY), and diffusion-ordered (DOSY) NMR spectroscopies shows that samples of oleate-coated PbS quantum dots (QDs) with core radii ranging from 1.6 to 2.4 nm, and purified by washing with acetone, contain two species of oleate characterized by the stretching frequencies of their carboxylate groups, the chemical shifts of their protons, and their diffusion coefficients.
View Article and Find Full Text PDFThis paper describes an investigation of the interfacial chemistry that enables formation of a multielectron ground-state charge-transfer (CT) complex of oleate-coated PbS quantum dots (QDs) and tetracyanoquinodimethane (TCNQ) in CHCl3 dispersions. Thermodynamically spontaneous electron transfer occurs from sulfur ions on the surfaces of the QDs (radius = 1.6 nm) to adsorbed TCNQ molecules and creates indefinitely stable ion pairs that are characterized by steady-state visible and mid-infrared absorption spectroscopy of reduced TCNQ and by NMR spectroscopy of the protons of oleate ligands that coat the QDs.
View Article and Find Full Text PDFThis paper describes unprecedented bathochromic shifts (up to 970 meV) of the optical band gaps of CdS, CdSe, and PbS quantum dots (QDs) upon adsorption of an organic ligand, phenyldithiocarbamate (PTC), and the use of PTC to map the quantum confinement of specific charge carriers within the QDs as a function of their radius. For a given QD material and physical radius, R, the magnitude of the increase in apparent excitonic radius (ΔR) upon delocalization by PTC directly reflects the degree of quantum confinement of one or both charge carriers. The plots of ΔR vs R for CdSe and CdS show that exciton delocalization by PTC occurs specifically through the excitonic hole.
View Article and Find Full Text PDFTransient absorption (TA) spectroscopy of solution-phase mixtures of colloidal CdS quantum dots (QDs) with acid-derivatized viologen molecules, N-[1-heptyl],N'-[3-carboxypropyl]-4,4'-bipyridinium dihexafluorophosphate (V(2+)), indicates electron transfer occurs from the conduction band of the QD to the LUMO of V(2+) after photoexcitation of a band-edge exciton in the QD. Analysis of the magnitude of the ground state bleach of the QD as a function of the molar ratio QD:V(2+) yields the QD-ligand adsorption constant, K(a) (4.4 × 10(4) M(-1)) for V(2+) ligands adsorbed in geometries conducive to electron transfer.
View Article and Find Full Text PDFEmploying silver nanoparticles from a recently developed synthesis [Evanoff, D. D.; Chumanov, G.
View Article and Find Full Text PDF