Understanding diffusive processes in networks is a significant challenge in complexity science. Networks possess a diffusive potential that depends on their topological configuration, but diffusion also relies on the process and initial conditions. This article presents Diffusion Capacity, a concept that measures a node's potential to diffuse information based on a distance distribution that considers both geodesic and weighted shortest paths and dynamical features of the diffusion process.
View Article and Find Full Text PDFModern society is increasingly massively connected, reflecting an omnipresent tendency to organize social, economic, and technological structures in complex networks. Recently, with the advent of the so-called multiplex networks, new concepts and tools were necessary to better understand the characteristics of this type of system, as well as to analyze and quantify its performance and efficiency. The concept of diversity in multiplex networks is a striking example of this intrinsically interdisciplinary effort to better understand the nature of complex networks.
View Article and Find Full Text PDFDiversity, understood as the variety of different elements or configurations that an extensive system has, is a crucial property that allows maintaining the system's functionality in a changing environment, where failures, random events or malicious attacks are often unavoidable. Despite the relevance of preserving diversity in the context of ecology, biology, transport, finances, etc., the elements or configurations that more contribute to the diversity are often unknown, and thus, they can not be protected against failures or environmental crises.
View Article and Find Full Text PDFA recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque et al., Phys. Rev.
View Article and Find Full Text PDF