The interpretation of ligand-target interactions at atomistic resolution is central to most efforts in computational drug discovery and optimization. However, the highly dynamic nature of protein targets, as well as possible induced fit effects, makes difficult to sample many interactions effectively with docking studies or even with large-scale molecular dynamics (MD) simulations. We propose a novel application of Self-Organizing Maps (SOMs) to address the sampling and dynamic mapping tasks, particularly in cases involving ligand flexibility and induced fit.
View Article and Find Full Text PDFActive targeting strategies have been proposed to enhance the selective uptake of nanoparticles (NPs) by diseased cells, and recent experimental findings have proven the effectiveness of this approach. However, no mechanistic studies have yet revealed the atomistic details of the interactions between ligand-activated NPs and integrins. As a case study, here we investigate, by means of advanced molecular dynamics simulations (MD) and machine learning methods (namely equilibrium MD, binding free energy calculations and training of self-organized maps), the interaction of a cyclic-RGD-conjugated PEGylated TiO NP (the nanodevice) with the extracellular segment of integrin αβ (the target), the latter experimentally well-known to be over-expressed in several solid tumors.
View Article and Find Full Text PDFAtomistic details on the mechanism of targeting activity by biomedical nanodevices of specific receptors are still scarce in the literature, where mostly ligand/receptor pairs are modeled. Here, we use atomistic molecular dynamics (MD) simulations, free energy calculations, and machine learning approaches on the case study of spherical TiO nanoparticles (NPs) functionalized with folic acid (FA) as the targeting ligand of the folate receptor (FR). We consider different FA densities on the surface and different anchoring approaches, i.
View Article and Find Full Text PDFThe Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism.
View Article and Find Full Text PDFThe initial phases of drug discovery - drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals, including halogenated aromatic hydrocarbons. In this work, we investigate the effects of the binding of the AhR prototypical ligand, TCDD, on the stability of the AhR:ARNT complex, as well as the mechanisms by which ligand-induced perturbations propagate to the DNA recognition site responsible for gene transcription. To this aim, a reliable structural model of the overall quaternary structure of the AhR:ARNT:DRE complex is proposed, based on homology modelling.
View Article and Find Full Text PDFInorganic nanoparticles show promising properties that allow them to be efficiently used as drug carriers. The main limitation in this type of application is currently the drug loading capacity, which can be overcome with a proper functionalization of the nanoparticle surface. In this study, we present, for the first time, a computational approach based on metadynamics to estimate the binding free energy of the doxorubicin drug (DOX) to a functionalized TiO nanoparticle under different pH conditions.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species.
View Article and Find Full Text PDFUnderstanding the process of ligand-protein recognition is important to unveil biological mechanisms and to guide drug discovery and design. Enhanced-sampling molecular dynamics is now routinely used to simulate the ligand binding process, resulting in the need for suitable tools for the analysis of large data sets of binding events. Here, we designed, implemented, and tested PathDetect-SOM, a tool based on self-organizing maps to build concise visual models of the ligand binding pathways sampled along single simulations or replicas.
View Article and Find Full Text PDFSeveral methods based on enhanced-sampling molecular dynamics have been proposed for studying ligand binding processes. Here, we developed a protocol that combines the advantages of steered molecular dynamics (SMD) and metadynamics. While SMD is proposed for investigating possible unbinding pathways of the ligand and identifying the preferred one, metadynamics, with the path collective variable (PCV) formalism, is suggested to explore the binding processes along the pathway defined on the basis of SMD, by using only two CVs.
View Article and Find Full Text PDFSeveral experimental studies indicated that large conformational changes, including partial domain unfolding, have a role in the functional mechanisms of the basic helix loop helix Per/ARNT/SIM (bHLH-PAS) transcription factors. Recently, single-molecule atomic force microscopy (AFM) revealed two distinct pathways for the mechanical unfolding of the ARNT PAS-B. In this work we used steered molecular dynamics simulations to gain new insights into this process at an atomistic level.
View Article and Find Full Text PDFNuclear receptors (NRs) are key regulators of human health and constitute a relevant target for medicinal chemistry applications as well as for toxicological risk assessment. Several open databases dedicated to small molecules that modulate NRs exist; however, depending on their final aim (i.e.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AHR) plays pleiotropic roles in the development and physiology of vertebrates in conjunction with xenobiotic and endogenous ligands. It is best known for mediating the toxic effects of dioxin-like pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While most vertebrates possess at least one AHR that binds TCDD tightly, amphibian AHRs bind TCDD with very low affinity.
View Article and Find Full Text PDF1,2-naphthoquinone (1,2-NQ) and 1,4-naphthoquinone (1,4-NQ) are clinically promising biologically active chemicals that have been shown to stimulate the aryl hydrocarbon receptor (AhR) signaling pathway, but whether they are direct or indirect ligands or activate the AhR in a ligand-independent manner is unknown. Given the structural diversity of AhR ligands, multiple mechanisms of AhR activation of gene expression, and species differences in AhR ligand binding and response, we examined the ability of 1,2-NQ and 1,4-NQ to bind to and activate the mouse and human AhRs using a series of in vitro AhR-specific bioassays and in silico modeling techniques. Both NQs induced AhR-dependent gene expression in mouse and human hepatoma cells, but were more potent and efficacious in human cells.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxicological effects of an AhR lacking the entire PASB structurally diverse chemicals, including halogenated aromatic hydrocarbons. Ligand-dependent transformation of the AhR into its DNA binding form involves a ligand-dependent conformational change, heat shock protein 90 (hsp90), dissociation from the AhR complex and AhR dimerization with the AhR nuclear translocator (ARNT) protein. The mechanism of AhR transformation was examined using mutational approaches and stabilization of the AhR:hsp90 complex with sodium molybdate.
View Article and Find Full Text PDFThe Ah receptor (AhR) is a ligand-dependent transcription factor belonging to the basic helix-loop-helix Per-Arnt-Sim (bHLH-PAS) superfamily. Binding to and activation of the AhR by a variety of chemicals results in the induction of expression of diverse genes and production of a broad spectrum of biological and toxic effects. The AhR also plays important roles in several physiological responses, which has led it to become a novel target for the development of therapeutic drugs.
View Article and Find Full Text PDFThe toxic manifestations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, primarily depend on its ability to activate aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor belonging to the superfamily of basic-helix-loop-helix DNA-binding proteins. In the present study, we aimed to identify novel protein receptor targets for TCDD using computational and in vitro validation experiments. Interestingly, results from computational methods predicted that Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) could be one of the potential targets for TCDD in both mouse and humans.
View Article and Find Full Text PDFThe Pregnane X Receptor (PXR) is a ligand-activated transcription factor belonging to the nuclear receptor family. PXR can bind diverse drugs and environmental toxicants with different binding modes, making it an intriguing target for drug discovery. Here we investigated the binding mechanism of the SR12813 ligand to elucidate the significant steps, from the ligand entrance pathway into the binding cavity, to the ligand-induced conformational changes, and to the exploration of its alternative binding geometries.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that modulates gene expression following its binding and activation by structurally diverse chemicals. Species differences in AhR functionality have been observed, with the mouse AhR (mAhR) and human AhR (hAhR) exhibiting significant differences in ligand binding, coactivator recruitment, gene expression and response. While the AhR agonist indirubin (IR) is a more potent activator of hAhR-dependent gene expression than the prototypical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), it is a significantly less potent activator of the mAhR.
View Article and Find Full Text PDFThe mediator of dioxin toxicity, aryl hydrocarbon receptor (AHR), has also important physiological functions. Selective AHR modulators (SAHRMs) share some effects of dioxins, except for their marked toxicity. We recently characterised toxicologically two novel SAHRMs, prodrugs IMA-08401 and IMA-07101 in rats, demonstrating that they are far less deleterious than the most toxic AHR-agonist, TCDD.
View Article and Find Full Text PDFHypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy.
View Article and Find Full Text PDFWe have developed a virtual screening procedure to identify potential ligands to the aryl hydrocarbon receptor (AhR) among a set of industrial chemicals. AhR is a key target for dioxin-like compounds, which is related to these compounds' potential to induce cancer and a wide range of endocrine and immune system-related effects. The virtual screening procedure included an initial filtration aiming at identifying chemicals with structural similarities to 66 known AhR binders, followed by 3 enrichment methods run in parallel.
View Article and Find Full Text PDFProtein dynamics play a critical role in ligand binding, and different models have been proposed to explain the relationships between protein motion and molecular recognition. Here, we present a study of ligand-binding processes associated with large conformational changes of a protein to elucidate the critical choices in ensemble-docking approaches for effective prediction of the binding geometry. Two study cases were selected in which binding involves different protein motions and intermolecular interactions and, accordingly, conformational selection and induced-fit mechanisms play different roles: binding of multiple ligands to the acetylcholine binding protein and highly specific binding of D-allose to the allose binding protein.
View Article and Find Full Text PDFMolecular modeling has given important contributions to elucidation of the main stages in the AhR signal transduction pathway. Despite the lack of experimentally determined structures of the AhR functional domains, information derived from homologous systems has been exploited for modeling their structure and interactions. Homology models of the AhR PASB domain have provided information on the binding cavity and contributed to elucidate species-specific differences in ligand binding.
View Article and Find Full Text PDFElucidation of the dimerization process of the aryl hydrocarbon receptor (AhR) with the AhR nuclear translocator (ARNT) is crucial for understanding the mechanisms underlying the functional activity of AhR, including mediation of the toxicity of environmental contaminants. In this work, for the first time a structural model of the AhR:ARNT dimer encompassing the entire bHLH-PASA-PASB domain region is proposed. It is developed by using a template-based modeling approach, relying on the recently available crystallographic structures of two dimers of homologous systems in the bHLH-PAS family of proteins: the CLOCK:BMAL1 and the HIF2α:ARNT heterodimers.
View Article and Find Full Text PDF