β1-chimaerin belongs to the chimaerin family of GTPase-activating proteins (GAPs) and is encoded by the gene, which also encodes the β2- and β3-chimaerin isoforms. All chimaerin isoforms have a C1 domain that binds diacylglycerol as well as tumor-promoting phorbol esters and a catalytic GAP domain that inactivates the small GTPase Rac. Nuclear Rac has emerged as a key regulator of various cell functions, including cell division, and has a pathological role by promoting tumorigenesis and metastasis.
View Article and Find Full Text PDFZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases.
View Article and Find Full Text PDFDiacylglycerol (DAG)/phorbol ester-regulated protein kinase C (PKC) isozymes have been widely linked to tumor promotion and the development of a metastatic phenotype. PKCε, an oncogenic member of the PKC family, is abnormally overexpressed in lung cancer and other cancer types. This kinase plays significant roles in proliferation, survival, and migration; however, its role in epithelial-to-mesenchymal transition (EMT) has been scarcely studied.
View Article and Find Full Text PDFPhosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (P-Rex1) is a key mediator of growth factor-induced activation of Rac1, a small GTP-binding protein widely implicated in actin cytoskeleton reorganization. This Guanine nucleotide Exchange Factor (GEF) is overexpressed in human luminal breast cancer, and its expression associates with disease progression, metastatic dissemination and poor outcome. Despite the established contribution of P-Rex1 to Rac activation and cell locomotion, whether this Rac-GEF has any relevant role in mitogenesis has been a subject of controversy.
View Article and Find Full Text PDFGuanine nucleotide Exchange Factors (GEFs) are responsible for mediating GDP/GTP exchange for specific small G proteins, such as Rac. There has been substantial evidence for the involvement of Rac-GEFs in the control of cancer cell migration and metastatic progression. We have previously established that the Rac-GEF P-Rex1 is a mediator of actin cytoskeleton rearrangements and cell motility in breast cancer cells downstream of HER/ErbB receptors and the G-Protein Coupled Receptor (GPCR) CXCR4.
View Article and Find Full Text PDFThe Rac nucleotide Exchange Factor (Rac-GEF) P-Rex1 is highly expressed in breast cancer, specifically in the luminal subtype, and is an essential mediator of actin cytoskeleton reorganization and cell migratory responses induced by stimulation of ErbB and other tyrosine-kinase receptors. Heregulin (HRG), a growth factor highly expressed in mammary tumors, causes the activation of P-Rex1 and Rac1 in breast cancer cells via ErbB3, leading to a motile response. Since there is limited information about P-Rex1 downstream effectors, we carried out a microarray analysis to identify genes regulated by this Rac-GEF after stimulation of ErbB3 with HRG.
View Article and Find Full Text PDFThe growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients.
View Article and Find Full Text PDFβ2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts.
View Article and Find Full Text PDFIntroduction: The Rac-GEF P-REX1 is a key mediator of ErbB signaling in breast cancer recently implicated in mammary tumorigenesis and metastatic dissemination. Although P-REX1 is essentially undetectable in normal human mammary epithelial tissue, this Rac-GEF is markedly upregulated in human breast carcinomas, particularly of the luminal subtype. The mechanisms underlying P-REX1 upregulation in breast cancer are unknown.
View Article and Find Full Text PDFOverexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells.
View Article and Find Full Text PDFChimaerins are a family of diacylglycerol- and phorbol ester-regulated GTPase activating proteins (GAPs) for the small G-protein Rac. Extensive evidence indicates that these proteins play important roles in development, axon guidance, metabolism, cell motility, and T cell activation. Four isoforms have been reported to-date, which are products of CHN1 (α1- and α2-chimaerins) and CHN2 (β1- and β2-chimaerins) genes.
View Article and Find Full Text PDFObjective: The CHN2 gene encodes the β2-chimaerin, a Rac-specific guanosine-5'-triphosphatase activating protein with an important role in the establishment of functional brain circuitry by controlling axon pruning. Genetic studies suggest that the CHN2 gene harbors variants that contribute to addiction vulnerability and smoking behavior. To further evaluate the role of β2-chimaerin in nicotine addiction, we investigated the association of 3 individual polymorphisms of the CHN2 gene with smoking dependence.
View Article and Find Full Text PDFGuanine nucleotide exchange factors (GEFs) that promote GTP loading onto the guanosine triphosphatases (GTPases) Rho and Rac are prominent players in cancer progression. Recent studies have highlighted the relevance of several GEFs, including the phosphatidylinositol 3,4,5-trisphosphate Rac exchangers P-Rex1 and P-Rex2a, in breast tumorigenesis. New evidence suggests that the exchange factors Vav2 and Vav3 play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and metastasis.
View Article and Find Full Text PDFAlcohol Clin Exp Res
February 2012
Background: Alcohol dependence (AD) vulnerability is determined by a complex array of genetic factors. Given the potential role of endocannabinoid system in AD, polymorphisms within cannabinoid receptor 1 gene (CNR1) have been potentially associated with susceptibility to this disease. We thus aimed to examine the relationship between 3 allelic variants of CNR1 (rs6454674, rs1049353, and rs806368) and AD.
View Article and Find Full Text PDF