We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics.
View Article and Find Full Text PDFThe architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes.
View Article and Find Full Text PDFMicroarrays (Basel)
July 2014
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model.
View Article and Find Full Text PDFFlavonoids are secondary metabolites present in all terrestrial plants. The flavonoid pathway has been extensively studied, and many of the involved genes and metabolites have been described in the literature. Despite this extensive knowledge, the functioning of the pathway in vivo is still poorly understood.
View Article and Find Full Text PDFInf Process Med Imaging
August 2007
In this paper we discuss new measures for connectivity analysis of brain white matter, using MR diffusion tensor imaging. Our approach is based on Riemannian geometry, the viability of which has been demonstrated by various researchers in foregoing work. In the Riemannian framework bundles of axons are represented by geodesics on the manifold.
View Article and Find Full Text PDF