Polymer films based on biodegradable polymers, polyethylene (PE) and modified PE with oxo-degradable additive were prepared by film blowing. Carbon black (1%) was added to all the films. Commercial biodegradable Ecovio and Mater-Bi samples were used.
View Article and Find Full Text PDFPolycarbonate is a good material for covering and protecting cultural heritage sites because of its durability, mechanical properties, and transparency. However, polycarbonate degrades under environmental weathering with a significant decrease of physical and mechanical properties and loss of transparency. In this work, the contemporary presence of ultraviolet irradiation and different temperature and moisture conditions have been taken into account to study the environmental degradation of this polymer with regard to its mechanical and optical properties.
View Article and Find Full Text PDFThe rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability.
View Article and Find Full Text PDFThe key structural factors underlying the unique black chromophore of eumelanin biopolymers have so far defied elucidation. Capitalizing on the ability of 1% polyvinylalcohol (PVA) to prevent pigment precipitation during melanogenesis in vitro, we have investigated the visible chromophore properties of soluble eumelanin-like polymers produced by biomimetic oxidation of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) in 1% PVA-containing buffer at pH 7. Upon dilution DHI-eumelanin solutions exhibited almost linear visible absorbance changes, whereas DHICA-eumelanin displayed a remarkable deviation from linearity in simple buffer, but not in PVA-containing buffer.
View Article and Find Full Text PDF