Publications by authors named "Laura Andrulionyte"

Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors belonging to the nuclear receptor superfamily. Three isoforms, PPARalpha, PPARgamma, and PPARdelta, which are encoded by separate genes, have been identified. The PPARs act as gene regulators of various metabolic pathways in energy and lipid metabolism, glucose homeostasis, adipogenesis, and inflammation.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR) alpha, a transcription factor of the nuclear receptor superfamily, regulates fatty acid oxidation. We evaluated the association of single nucleotide polymorphisms (SNPs) of the PPAR-alpha gene (PPARA) with the conversion from impaired glucose tolerance to type 2 diabetes in 767 subjects of the STOP-NIDDM trial in order to investigate the effect of acarbose in comparison with placebo on the prevention of diabetes. In the placebo group, the G (162V) allele of rs1800206 increased the risk for diabetes by 1.

View Article and Find Full Text PDF

Hepatocyte nuclear factor 4alpha (HNF4alpha) is a transcription factor, which is necessary for normal function of human liver and pancreatic islets. We investigated whether single nucleotide polymorphisms (SNPs) of HNF4A, encoding HNF4alpha, influenced the conversion from impaired glucose tolerance (IGT) to type 2 diabetes mellitus in subjects of the STOP-NIDDM trial. This trial aimed at evaluating the effect of acarbose compared to placebo in the prevention of type 2 diabetes mellitus.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR)-delta regulates fatty acid oxidation and improves insulin sensitivity. We screened six single nucleotide polymorphisms (SNPs) of the PPAR-delta gene (PPARD) for an association with the conversion from impaired glucose tolerance (IGT) to type 2 diabetes in 769 subjects participating in the STOP-NIDDM trial. A 2.

View Article and Find Full Text PDF