A proper balance of metabolic pathways is crucial for engineering microbial strains that can efficiently produce biochemicals on an industrial scale while maintaining cell fitness. High production loads can negatively impact cell fitness and hinder industrial-scale production. To address this, fine-tuning gene expression using engineered promoters and genetic circuits can promote control over multiple targets in pathways and reduce the burden.
View Article and Find Full Text PDFBacillus subtilis employs five purine riboswitches for the control of purine de novo synthesis and transport at the transcription level. All of them are formed by a structurally conserved aptamer, and a variable expression platform harboring a rho-independent transcription terminator. In this study, we characterized all five purine riboswitches under the context of active gene expression processes both in vitro and in vivo.
View Article and Find Full Text PDFTo investigate the effects of the previous administration of testosterone propionate (TP) on the morphology of the gastrocnemius muscle of Wistar rats submitted to ladder-based resistance training (LRT). Twenty-eight rats were divided equally into groups: initial control (CI), 4-week TP (CT4), 4-week TP + LRT (TRT), and placebo + LRT (RT). The rats from the CT4 and TRT groups were treated with TP for four weeks (10 mg/kg/week).
View Article and Find Full Text PDFCRISPR has revolutionized the way we engineer genomes. Its simplicity and modularity have enabled the development of a great number of tools to edit genomes and to control gene expression. This powerful technology was first adapted to in 2016 and has been intensely upgraded since then.
View Article and Find Full Text PDFOur growing knowledge of the diversity of non-coding RNAs in natural systems and our deepening knowledge of RNA folding and function have fomented the rational design of RNA regulators. Based on that knowledge, we designed and implemented a small RNA tool to target bacterial riboswitches and activate gene expression (rtRNA). The synthetic rtRNA is suitable for regulation of gene expression both in cell-free and in cellular systems.
View Article and Find Full Text PDFBackground: Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified.
View Article and Find Full Text PDFObestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, which includes adipogenesis, pancreatic homeostasis and cancer.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
January 2010
1. Ghrelin is a multifunctional peptide hormone that affects various processes, including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types.
View Article and Find Full Text PDF