Angew Chem Int Ed Engl
March 2019
Herein, we report a catalytic and stereospecific method for the preparation of enantioenriched α-hydroxy cyclopropylboronates with control in four contiguous stereocenters. The reaction involves the borylation of readily available allylic epoxides using an inexpensive Cu(I) salt and a commercially available phosphine ligand. High diastereocontrol is achieved and different diastereomers can be selectively prepared.
View Article and Find Full Text PDFChiral α-allenols are prepared with high diastereocontrol through an unprecedented and spontaneous β-oxygen elimination of an α-epoxy vinyl boronate. Stochiometric experiments and DFT calculations support a dual role of the copper catalyst, which orchestrates the hydroboration and the syn-elimination step.
View Article and Find Full Text PDFThe intermolecular gold(I)-catalyzed reaction between arylalkynes and alkenes leads to cyclobutenes by a [2 + 2] cycloaddition, which takes place stepwise, first by formation of cyclopropyl gold(I) carbenes, followed by a ring expansion. However, 1,3-butadienes are also formed in the case of ortho-substituted arylalkynes by a metathesis-type process. The corresponding reaction of alkenes with aryl-1,3-butadiynes, ethynylogous to arylalkynes, leads exclusively to cyclobutenes.
View Article and Find Full Text PDFA novel Cu-catalyzed diastereo- and enantioselective desymmetrization of cyclopropenes to afford nonracemic cyclopropylboronates is described. Trapping the cyclopropylcopper intermediate with electrophilic amines allows for the synthesis of cyclopropylaminoboronic esters and demonstrates the potential of the approach for the synthesis of functionalized cyclopropanes.
View Article and Find Full Text PDF