Air pollution, tobacco smoke, and red meat are associated with renal cell cancer (RCC) risk in the United States and Western Europe; however, the chemicals that form DNA adducts and initiate RCC are mainly unknown. herbaceous plants are used for medicinal purposes in Asia and worldwide. They are a significant risk factor for upper tract urothelial carcinoma (UTUC) and RCC to a lesser extent.
View Article and Find Full Text PDFThe tobacco-specific nitrosamine '-nitrosonornicotine (NNN) and its close analogue 4-(-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) are classified as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer. The currently used biomarker to monitor NNN exposure is urinary total NNN (free NNN plus its -glucuronide). However, total NNN does not provide information about the extent of metabolic activation of NNN as related to its carcinogenicity.
View Article and Find Full Text PDFAlcohol consumption is a risk factor for the development of several cancers, including those of the head and neck and the esophagus. The underlying mechanisms of alcohol-induced carcinogenesis remain unclear; however, at these sites, alcohol-derived acetaldehyde seems to play a major role. By reacting with DNA, acetaldehyde generates covalent modifications (adducts) that can lead to mutations.
View Article and Find Full Text PDFThe tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent lung carcinogen that exerts its carcinogenic effects upon metabolic activation. The identification and quantitation of NNK metabolites could identify potential biomarkers of bioactivation and detoxification of this potent carcinogen and may be used to predict lung cancer susceptibility among smokers. Here, we used in vivo isotope-labeling and high-resolution-mass-spectrometry-based methods for the comprehensive profiling of all known and unknown NNK metabolites.
View Article and Find Full Text PDF4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a lung-specific tobacco carcinogen. Metabolism is critical to its elimination given its lipophilic nature. Although NNK can be metabolized through detoxification pathways that safely eliminate it from the body, it can also be bioactivated, resulting in the formation of potentially carcinogenic DNA adducts.
View Article and Find Full Text PDF