Adults perform better than juveniles in food-seeking tasks. Using the nematode to probe the neural mechanisms underlying behavioral maturation, we found that adults and juveniles require different combinations of sensory neurons to generate age-specific food-seeking behavior. We first show that adults and juveniles differ in their response to and preference for food-associated odors, and we analyze genetic mutants to map the neuronal circuits required for those behavioral responses.
View Article and Find Full Text PDFOxygen is essential for metabolism of animals and is a vital component of their natural habitats. Hypoxic conditions in tissue, when oxygen levels are lower than normal, change a variety of cellular processes, while environmental hypoxia can have physiological and behavioral effects on the whole animal. Larval zebrafish respond to oxygen deprivation with a characteristic set of physiological changes and motor behaviors, making them a convenient vertebrate model to study hypoxia responses.
View Article and Find Full Text PDFBackground: We previously showed that equivalence between two identified zebrafish motoneurons is broken by interactions with identified muscle fibers that act as an intermediate target for the axons of these motoneurons. Here we investigate the molecular basis of the signaling interaction between the intermediate target and the motoneurons.
Principal Findings: We provide evidence that Netrin 1a is an intermediate target-derived signal that causes two equivalent motoneurons to adopt distinct fates.
We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging.
View Article and Find Full Text PDFThe ability of animals to carry out their normal behavioral repertoires requires exquisitely precise matching between specific motoneuron subtypes and the muscles they innervate. However, the molecular mechanisms that regulate motoneuron subtype specification remain unclear. Here, we use individually identified zebrafish primary motoneurons to describe a novel role for Nkx6 and Islet1 proteins in the specification of vertebrate motoneuron subtypes.
View Article and Find Full Text PDFMistakes are common to all forms of behavior but there is disagreement about what causes errors. We recorded electrophysiological and behavioral measures in a letter discrimination task to examine whether deficits in preparatory attention predicted subsequent response errors. Error trials were characterized by decreased frontal-central preparatory attention event-related potentials (ERPs) prior to stimulus presentation and decreased extrastriate sensory ERPs during visual processing.
View Article and Find Full Text PDFRetinoic acid signaling is important for patterning the central nervous system, paired appendages, digestive tract, and other organs. To begin to investigate retinoic acid signaling in zebrafish, we determined orthologies between zebrafish and tetrapod retinoic acid receptors (Rars) and examined the expression patterns of rar genes during embryonic development. Analysis of phylogenies and conserved syntenies showed that the three cloned zebrafish rar genes include raraa and rarab, which are co-orthologs of tetrapod Rara, and rarg, which is the zebrafish ortholog of tetrapod Rarg.
View Article and Find Full Text PDFDuring development of vertebrate embryos, retinoic acid plays a variety of roles that are mediated by binding to retinoic acid receptors (Rars) and their heterodimerization partners, the retinoid receptors (Rxrs). Here, we characterize the expression patterns of four zebrafish rxr genes during development and provide an analysis of the phylogenetic relationships between zebrafish and tetrapod Rxr genes based on sequence similarities and conserved syntenies. This analysis prompted the renaming of several of the zebrafish rxr genes to match their tetrapod orthologs.
View Article and Find Full Text PDFPaired appendages were a key developmental innovation among vertebrates and they eventually evolved into limbs. Ancient developmental control systems for paired fins and limbs are broadly conserved among gnathostome vertebrates. Some lineages including whales, some salamanders, snakes, and many ray-fin fish, independently lost the pectoral, pelvic, or both appendages over evolutionary time.
View Article and Find Full Text PDFUnexpected novel events generate an orienting response that plays an important role in some forms of learning and memory. The orienting response involuntarily captures attention and rapidly habituates as events become familiarized. Although evidence from patients with focal lesions and scalp and intracranial event-related brain potential recordings supports the involvement of a distributed neural network involving association cortex and the limbic system in novelty detection, the key neural substrates and temporal dynamics have not been defined.
View Article and Find Full Text PDF