Publications by authors named "Laura A Filla"

As microfluidic cell culture progresses, the need for robust and reproducible intracellular analyses grows. In particular, intracellular metabolites are subject to perturbation and degradation during the lysing process. The reliability of intracellular metabolomic analysis in microfluidic devices depends on the preservation of metabolite integrity during sample preparation and storage.

View Article and Find Full Text PDF

Sample pretreatment in conventional cellular metabolomics entails rigorous lysis and extraction steps which increase the duration as well as limit the consistency of these experiments. We report a biomimetic cell culture microfluidic device (MFD) which is coupled with an automated system for rapid, reproducible cell lysis using a combination of electrical and chemical mechanisms. In-channel microelectrodes were created using facile fabrication methods, enabling the application of electric fields up to 1000 V cm(-1).

View Article and Find Full Text PDF

With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy.

View Article and Find Full Text PDF

Despite the prevalence of diabetes and the global health risks it poses, the biochemical pathogenesis of diabetic complications remains poorly understood with few effective therapies. This study employs capillary liquid chromatography (capLC) and tandem mass spectrometry (MS/MS) in conjunction with both global metabolomics and isobaric tags specific to amines and carbonyls to probe aortic metabolic content in diabetic mice with hyperglycemia, hyperlipidemia, hypertension, and stenotic vascular damage. Using these combined techniques, metabolites well-characterized in diabetes as well as novel pathways were investigated.

View Article and Find Full Text PDF

Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to "desegment" the flow into separate aqueous and immiscible carrier phase streams is needed.

View Article and Find Full Text PDF

In this communication, we demonstrate that a carbon ink microelectrode array, where the electrodes are held at the same potential, affords significant signal enhancement in microchip electrophoresis with amperometric detection. The ability to fabricate an array of carbon ink microelectrodes with a palladium decoupler was demonstrated and the resulting electrodes were integrated with a valving microchip design. The use of an 8 electrode array led to a significant improvement in the limits of detection at the expense of separation resolution due to the increased detection zone size.

View Article and Find Full Text PDF