Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater.
View Article and Find Full Text PDFHuman sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location.
View Article and Find Full Text PDFWatersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin.
View Article and Find Full Text PDFTo help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database.
View Article and Find Full Text PDFIn a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database.
View Article and Find Full Text PDFRelations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific.
View Article and Find Full Text PDFWaterborne contaminants were monitored in 69 tributaries of the Laurentian Great Lakes in 2010 and 2014 using semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). A risk-based screening approach was used to prioritize chemicals and chemical mixtures, identify sites at greatest risk for biological impacts, and identify potential hazards to monitor at those sites. Analyses included 185 chemicals (143 detected) including polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, fire retardants, pharmaceuticals, and fragrances.
View Article and Find Full Text PDFChemical monitoring data were collected in surface waters from 57 Great Lakes tributaries from 2010 to 13 to identify chemicals of potential biological relevance and sites at which these chemicals occur. Traditional water-quality benchmarks for aquatic life based on in vivo toxicity data were available for 34 of 67 evaluated chemicals. To expand evaluation of potential biological effects, measured chemical concentrations were compared to chemical-specific biological activities determined in high-throughput (ToxCast) in vitro assays.
View Article and Find Full Text PDFOrganic chemicals from industrial, agricultural, and residential activities can enter surface waters through regulated and unregulated discharges, combined sewer overflows, stormwater runoff, accidental spills, and leaking septic-conveyance systems on a daily basis. The impact of point and nonpoint contaminant sources can result in adverse biological effects for organisms living in or near surface waters. Assessing the adverse or toxic effects that may result when exposure occurs is complicated by the fact that many commonly used chemicals lack toxicity information or water quality standards.
View Article and Find Full Text PDFSeveral organic contaminants (OCs) have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs in eaglets, little is understood about potential biological effects associated with exposure. We screened an existing database of OC concentrations in eaglet plasma collected from the Midwestern United States against bioactivity information from the ToxCast database.
View Article and Find Full Text PDFComplex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence.
View Article and Find Full Text PDFSafe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.
View Article and Find Full Text PDFCurrent environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants.
View Article and Find Full Text PDFOrganic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010-13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes.
View Article and Find Full Text PDFChloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.
View Article and Find Full Text PDF