Publications by authors named "Laura A Copela"

5S rRNA genes from Saccharomyces cerevisiae were examined by Miller chromatin spreading, representing the first quantitative analysis of RNA polymerase III genes in situ by electron microscopy. These very short genes, approximately 132 nucleotides (nt), were engaged by one to three RNA polymerases. Analysis in different growth conditions and in strains with a fourfold range in gene copy number revealed regulation at two levels: number of active genes and polymerase loading per gene.

View Article and Find Full Text PDF

Although nascent noncoding RNAs can undergo maturation to functional RNAs or degradation by quality control pathways, the events that influence the choice of pathway are not understood. We report that the targeting of pre-tRNAs and certain other noncoding RNAs for decay by the TRAMP pathway is strongly influenced by competition between the La protein and the Rex1 exonuclease for access to their 3' ends. The La protein binds the 3' ends of many nascent noncoding RNAs, protecting them from exonucleases.

View Article and Find Full Text PDF

Although the La protein stabilizes nascent pre-tRNAs from nucleases, influences the pathway of pre-tRNA maturation, and assists correct folding of certain pre-tRNAs, it is dispensable for growth in both budding and fission yeast. Here we show that the Saccharomyces cerevisiae La shares functional redundancy with both tRNA modification enzymes and other proteins that contact tRNAs during their biogenesis. La is important for growth in the presence of mutations in either the arginyl tRNA synthetase or the tRNA modification enzyme Trm1p.

View Article and Find Full Text PDF