Publications by authors named "Laura A Claessens"

Posttranslational modification by small ubiquitin-like modifiers (SUMOs) is critical in regulating diverse cellular processes including gene expression, cell cycle progression, genome integrity, cellular metabolism, and inflammation and immunity. The covalent attachment of SUMOs to target proteins is highly dynamic and reversible through the concerted action of SUMO conjugating and deconjugating enzymes. In mammalian cells, sentrin-specific proteases (SENPs) are the most abundant family of deconjugating enzymes.

View Article and Find Full Text PDF

The SUMO protease SENP6 maintains genomic stability, but mechanistic understanding of this process remains limited. We find that SENP6 deconjugates SUMO2/3 polymers on a group of DNA damage response proteins, including BRCA1-BARD1, 53BP1, BLM and ERCC1-XPF. SENP6 maintains these proteins in a hypo-SUMOylated state under unstressed conditions and counteracts their polySUMOylation after hydroxyurea-induced stress.

View Article and Find Full Text PDF

Background: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α).

View Article and Find Full Text PDF

In contrast to our extensive knowledge on covalent small ubiquitin-like modifier (SUMO) target proteins, we are limited in our understanding of non-covalent SUMO-binding proteins. We identify interactors of different SUMO isoforms-monomeric SUMO1, monomeric SUMO2, or linear trimeric SUMO2 chains-using a mass spectrometry-based proteomics approach. We identify 379 proteins that bind to different SUMO isoforms, mainly in a preferential manner.

View Article and Find Full Text PDF

Aims/hypothesis: Heterogeneity in individuals with type 1 diabetes has become more generally appreciated, but has not yet been extensively and systematically characterised. Here, we aimed to characterise type 1 diabetes heterogeneity by creating immunological, genetic and clinical profiles for individuals with juvenile-onset type 1 diabetes in a cross-sectional study.

Methods: Participants were HLA-genotyped to determine HLA-DR-DQ risk, and SNP-genotyped to generate a non-HLA genetic risk score (GRS) based on 93 type 1 diabetes-associated SNP variants outside the MHC region.

View Article and Find Full Text PDF

In contrast to our extensive knowledge on ubiquitin polymer signaling, we are severely limited in our understanding of poly-SUMO signaling. We set out to identify substrates conjugated to SUMO polymers, using knockdown of the poly-SUMO2/3 protease SENP6. We identify over 180 SENP6 regulated proteins that represent highly interconnected functional groups of proteins including the constitutive centromere-associated network (CCAN), the CENP-A loading factors Mis18BP1 and Mis18A and DNA damage response factors.

View Article and Find Full Text PDF
Article Synopsis
  • SUMOylation involves the addition of small ubiquitin-like modifiers to proteins, helping regulate key nuclear functions.
  • The process is controlled through a series of enzymes and can be reversed by SUMO-specific proteases (SENPs), with imbalances linked to diseases like cancer.
  • Recent research has focused on SENPs as potential drug targets, discussing inhibitors and methods for assessing their activity in the development of therapies.
View Article and Find Full Text PDF

Aims/hypothesis: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice.

Methods: We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy.

View Article and Find Full Text PDF

As the organ shortage increases, inherently the demand for donor kidneys continues to rise. Thus, live kidney donation is essential for increasing the donor pool. In order to create successful expansion, extended criteria live kidney donors should be considered.

View Article and Find Full Text PDF