Publications by authors named "Laubenstein M"

The Pauli exclusion principle (PEP), a cornerstone of quantum mechanics and whole science, states that in a system, two fermions can not simultaneously occupy the same quantum state. Several experimental tests have been performed to place increasingly stringent bounds on the validity of PEP. Among these, the series of VIP experiments, performed at the Gran Sasso Underground National Laboratory of INFN, is searching for PEP-violating atomic X-ray transitions in copper.

View Article and Find Full Text PDF
Article Synopsis
  • A search for dark matter candidates in the mass range of 65 to 1021 keV was conducted using data from the GERDA experiment, focusing on energy depositions without detecting any significant signals above background noise.
  • The study established stringent exclusion limits on dark photon and axion-like particle interactions with electrons, with specific constraints noted at a 150 keV mass level.
  • Additional investigations into the decay rates of nucleons and electrons yielded lower lifetime limits for neutron, proton, and electron decay events at a 90% confidence interval.
View Article and Find Full Text PDF

Certified reference material (CRM) for natural (K,Pb,Po,Ra,Ra,Th,Th,Th,U,U, andU) and anthropogenic (Cs,Pu, andAm) radionuclides in marine sediment from the Baltic Sea (IAEA-465) has been developed. Information values are given for Pu,Pu andPu. Altogether 27 laboratories participated in this exercise.

View Article and Find Full Text PDF

Fermions are subject to the Pauli Exclusion Principle (PEP), which is grounded on the spin-statistics theorem and, hence, related to the very same structure of the underlying symmetries. The VIP-2 (VIolation of Pauli exclusion principle - 2) experiment has been performing extreme sensitivity tests of the PEP, up to its current and final configuration, exploiting several experimental setups designed to study different theoretical models of PEP violation, looking for a faint signal of physics Beyond the Standard Model.A current is introduced in the copper target to bring new electrons into the system and, hence, fulfill the requirements of the Messiah-Greenberg Super-Selection rule.

View Article and Find Full Text PDF

We present the measurement of the two-neutrino double-β decay rate of ^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T_{1/2}^{2ν}=(2.

View Article and Find Full Text PDF

We search for tri-nucleon decays of Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to Cu, Zn, and Ga nuclei, respectively.

View Article and Find Full Text PDF

LEGEND-200 (Large Enriched Germanium Experiment for Neutrinoless ββ Decay) is a physics experiment at the Gran Sasso National Laboratories (LNGS) in Italy searching for neutrinoless double beta (0υββ) decay of Ge using enriched high purity germanium (HPGe) detectors with a total mass of about 200 kg. During the production of germanium crystals, especially during the crystal cutting, a fraction of the enriched germanium remains as metal residues. To reuse these residual materials again for crystal growing, they must be efficiently purified.

View Article and Find Full Text PDF

A 510 day long-term measurement of a 45.3 g platinum foil acting as the sample and high voltage contact in an ultra-low-background high purity germanium detector was performed at Laboratori Nazionali del Gran Sasso (Italy). The data was used for a detailed study of double beta decay modes in natural platinum isotopes.

View Article and Find Full Text PDF

Large area Silicon Drift Detectors are employed in high sensitivity tests of the Pauli Exclusion Principle by the VIP-2 Collaboration. The experiment is operated in the extremely low cosmic background environment of the Gran Sasso underground National Laboratory of INFN. In this work an off-line analysis method is proposed which provides an additional background reduction, as well as a better calibration procedure.

View Article and Find Full Text PDF

The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.

View Article and Find Full Text PDF

Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model-the strength λ and the correlation length rC-and have led, so far, to the exclusion of regions of the admissible (λ-rC) parameters space.

View Article and Find Full Text PDF

This proceeding presents the decomposition of the background spectra of the four screening detectors GeMPI 1 - 4 at the Gran Sasso Underground Laboratory (LNGS) using Monte Carlo simulations in the Geant4-based framework MaGe. A detailed understanding of the composition of the background spectra was achieved, allowing for the proposal of two new shield designs for future GeMPI-like detectors and enabling a reduction of the integrated background count rate to 15 counts/d/kg in the interval [40, 2700] keV.

View Article and Find Full Text PDF

CRESST is a leading direct detection sub-GeVc dark matter experiment. During its second phase, cryogenic bolometers were used to detect nuclear recoils off the CaWO target crystal nuclei. The previously established electromagnetic background model relies on Secular Equilibrium (SE) assumptions.

View Article and Find Full Text PDF

The Cavezzo meteorite was recovered on January 4, 2020, just three days after the fall observed over Northern Italy by the all-sky cameras of the Italian PRISMA fireball network. Two specimens, weighing 3.1 g (F1) and 52.

View Article and Find Full Text PDF

Non-destructive characterisation of meteorites is here performed on a stony meteorite. The identification of the sample is performed by low-background γ-ray spectrometry in order to determine the presence of certain cosmogenic radionuclides, whereas a mineralogical phase quantitative analysis is carried out by Time-of-Flight Neutron Diffraction (ToF-ND) on the sample as-it-is. The protocol is then validated by applying micro-Raman Spectroscopy (μRS) and Energy Dispersive X-ray Spectroscopy (EDS).

View Article and Find Full Text PDF

We present an improved measurement of the carbon-nitrogen-oxygen (CNO) solar neutrino interaction rate at Earth obtained with the complete Borexino Phase-III dataset. The measured rate, R_{CNO}=6.7_{-0.

View Article and Find Full Text PDF

Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid.

View Article and Find Full Text PDF

Investigations of possible violations of the Pauli exclusion principle represent critical tests of the microscopic space-time structure and properties. Space-time noncommutativity provides a class of universality for several quantum gravity models. In this context the VIP-2 lead experiment sets the strongest bounds, searching for the Pauli exclusion principle violating atomic transitions in lead, excluding the θ-Poincaré noncommutative quantum gravity models far above the Planck scale for nonvanishing θ_{μν} electriclike components, and up to 6.

View Article and Find Full Text PDF

The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described.

View Article and Find Full Text PDF

In this paper we perform a critical analysis of the Orch OR consciousness theory at the crossroad with the newest experimental results coming from the search for spontaneous radiation predicted by the simplest version of gravity-related dynamical collapse models. We conclude that Orch OR theory, when based on the simplest version of gravity-related dynamical collapse, is highly implausible in all the cases analyzed. We discuss the implications of our findings, the limitations, and future plans toward the development of more realistic gravity-related collapse models.

View Article and Find Full Text PDF

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- decay in Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events.

View Article and Find Full Text PDF
Article Synopsis
  • - The Borexino detector at Laboratori Nazionali del Gran Sasso successfully measured sub-MeV solar neutrinos using Cherenkov radiation and a technique linking photon hits to the Sun's position.
  • - In the energy range of 0.54 to 0.74 MeV, they detected 10,887 solar neutrinos from a total of 19,904 events, indicating a neutrino interaction rate consistent with standard solar model predictions.
  • - This groundbreaking measurement showcases the use of directional Cherenkov information in liquid scintillator detectors, paving the way for future hybrid methods that utilize both Cherenkov and scintillation signals in neutrino research.
View Article and Find Full Text PDF

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- decay in Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at  keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- decays allowed by the Standard Model.

View Article and Find Full Text PDF

Neutrinoless double- decay of Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in Ge.

View Article and Find Full Text PDF