Introduction: The physiologic derangements imposed by cardiopulmonary bypass (CPB) can result in complications such as postoperative delirium. We aim to validate a rodent survival model of CPB demonstrating a systemic inflammatory response and hypothesize that this contributes to post-CPB delirium.
Methods: Adult Sprague-Dawley rats were randomized to three groups: 1) Sham peripheral surgical cannulation, 2) CPB followed by acute phase harvest, or 3) CPB followed by 24-h survival.
Introduction: Despite resuscitation advances including extracorporeal cardiopulmonary resuscitation (ECPR), freedom from neurologic and myocardial insult after cardiac arrest remains unlikely. We hypothesized that adenosine 2A receptor (A2AR) agonism, which attenuates reperfusion injury, would improve outcomes in a porcine model of ECPR.
Methods: Adult swine underwent 20 min of circulatory arrest followed by defibrillation and 6 h of ECPR.
Objective: Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel important in many physiological and pathophysiological processes, including pulmonary disease. Using a murine model, we previously demonstrated that TRPV4 mediates lung ischemia-reperfusion injury, the major cause of primary graft dysfunction after transplant. The current study tests the hypothesis that treatment with a TRPV4 inhibitor will attenuate lung ischemia-reperfusion injury in a clinically relevant porcine lung transplant model.
View Article and Find Full Text PDFThe success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction.
View Article and Find Full Text PDFLung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. Here, we investigated the cellular mechanisms underlying lung IR-induced activation of endothelial TRPV4 channels, which play a central role in lung edema and dysfunction after IR. In a left lung hilar-ligation model of IRI in mice, we found that lung IRI increased the efflux of ATP through pannexin 1 (Panx1) channels at the endothelial cell (EC) membrane.
View Article and Find Full Text PDFLung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. We recently reported that endothelial cell (EC) TRPV4 channels play a central role in lung edema and dysfunction after IR. However, the cellular mechanisms for lung IR-induced activation of endothelial TRPV4 channels are unknown.
View Article and Find Full Text PDFEndothelial cells (ECs) from small pulmonary arteries (PAs) release nitric oxide (NO) and prostacyclin, which lower pulmonary arterial pressure (PAP). In pulmonary hypertension (PH), the levels of endothelium-derived NO and prostacyclin are reduced, contributing to elevated PAP. Small-and intermediate-conductance Ca-activated K channels (IK and SK)-additional crucial endothelial mediators of vasodilation-are also present in small PAs, but their function has not been investigated in PH.
View Article and Find Full Text PDFThe alveolo-capillary barrier is relatively impermeable, and facilitates gas exchange via the large alveolar surface in the lung. Disruption of alveolo-capillary barrier leads to accumulation of edema fluid in lung injury. Studies in animal models of various forms of lung injury provide evidence that TRPV4 channels play a critical role in disruption of the alveolo-capillary barrier and pathogenesis of lung injury.
View Article and Find Full Text PDFIntroduction: Mainstays of current treatment for acute respiratory distress syndrome (ARDS) focus on supportive care and rely on intrinsic organ recovery. Animal models of ARDS are often limited by systemic injury. We hypothesize that superimposing gastric aspiration and ventilator-induced injury will induce a lung-specific injury model of severe ARDS.
View Article and Find Full Text PDFObjectives: Acute respiratory distress syndrome represents the devastating result of acute lung injury, with high mortality. Limited methods are available for rehabilitation of lungs affected by acute respiratory distress syndrome. Our laboratory has demonstrated rehabilitation of sepsis-injured lungs via normothermic ex vivo and in vivo perfusion with Steen solution (Steen).
View Article and Find Full Text PDFAdvancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome.
View Article and Find Full Text PDFPannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels.
View Article and Find Full Text PDFBackground: Lung ischemia-reperfusion injury (IRI), involving severe inflammation and edema, is a major cause of primary graft dysfunction after transplant. Activation of transient receptor potential vanilloid 4 (TRPV4) channels modulates vascular permeability. Thus, this study tests the hypothesis that endothelial TRPV4 channels mediate lung IRI.
View Article and Find Full Text PDFRecent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions.
View Article and Find Full Text PDFCurrent burn therapy is largely supportive with limited therapies to curb secondary burn progression. Adenosine 2A receptor (A2AR) agonists have anti-inflammatory effects with decreased inflammatory cell infiltrate and release of proinflammatory mediators. Using a porcine comb burn model, we examined whether A2AR agonists could mitigate burn progression.
View Article and Find Full Text PDFSemin Thorac Cardiovasc Surg
October 2023
Sepsis is the leading cause of acute respiratory distress syndrome (ARDS) in adults and carries a high mortality. Utilizing a previously validated porcine model of sepsis-induced ARDS, we sought to refine our novel therapeutic technique of in vivo lung perfusion (IVLP). We hypothesized that 2 hours of IVLP would provide non-inferior lung rehabilitation compared to 4 hours of treatment.
View Article and Find Full Text PDFCurr Opin Organ Transplant
April 2021
Purpose Of Review: Primary graft dysfunction (PGD) is the leading cause of early mortality following lung transplantation and is typically caused by lung ischemia-reperfusion injury (IRI). Current management of PGD is largely supportive and there are no approved therapies to prevent lung IRI after transplantation. The purinergic signaling network plays an important role in this sterile inflammatory process, and pharmacologic manipulation of said network is a promising therapeutic strategy.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality, and current management has a dramatic impact on healthcare resource utilization. While our understanding of this disease has improved, the majority of treatment strategies remain supportive in nature and are associated with continued poor outcomes. There is a dramatic need for the development and breakthrough of new methods for the treatment of ARDS.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2020
Am J Physiol Lung Cell Mol Physiol
February 2020
Primary graft dysfunction after lung transplantation, a consequence of ischemia-reperfusion injury (IRI), is a major cause of morbidity and mortality. IRI involves acute inflammation and innate immune cell activation, leading to rapid infiltration of neutrophils. Formyl peptide receptor 1 (FPR1) expressed by phagocytic leukocytes plays an important role in neutrophil function.
View Article and Find Full Text PDFJ Heart Lung Transplant
January 2020
Background: Current ex vivo lung perfusion (EVLP) protocols aim to achieve perfusion flows of 40% of cardiac output or more. We hypothesized that a lower target flow rate during EVLP would improve graft function and decrease inflammation of donation after circulatory death (DCD) lungs.
Methods: A porcine DCD and EVLP model was utilized.
Dysregulated redox signaling in pulmonary vasculature is central to the development of pulmonary arterial hypertension (PAH) and lung injury. Modulators of reactive oxygen species (ROS) production and downstream signaling targets are critical for mediating the physiological or pathological effects of ROS. Understanding the complex interactions between the modulators and signaling targets of ROS is essential for developing novel strategies to prevent or attenuate lung pathologies.
View Article and Find Full Text PDFObjective: We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR.
Summary Background Data: Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist.
Chronic obstructive pulmonary disease (COPD) is expected to climb on the podium of the leading causes of mortality worldwide in the upcoming decade. Clinical diagnosis of COPD has classically relied upon detecting irreversible airflow obstruction on pulmonary function testing as a global assessment of pulmonary physiology. However, the outcome is still not favorable to decrease mortality due to COPD.
View Article and Find Full Text PDF