Publications by authors named "Lattuada Marco"

Introduction: Cell repair dynamics are crucial in optimizing anti-cancer therapies. Various assays (eg, comet assay and γ-H2AX) assess post-radiation repair kinetics, but interpreting such data is challenging and model-based data analyses are required. However, ambiguities in parameter calibration remain an unsolved challenge.

View Article and Find Full Text PDF

, a non-fermentative, ubiquitous, gram-negative aerobic bacterium, is associated with high mortality rates, particularly in immunocompromised or debilitated patients. The prevalence rate of ICU-acquired pneumonia episodes caused by this microorganism has been found to be 2%. has been identified as one of the top 10 microorganisms responsible for such infections in EU/EEA countries.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that exerts its pleiotropic effects through a specific GLP-1 receptor (GLP-1R). The hormone-receptor complex might regulate glucose-dependent insulin secretion, and energy homeostasis; moreover, it could decrease inflammation and provide cardio- and neuroprotection. Additionally, the beneficial influence of GLP-1 on obesity in women might lead to improvement of their ovarian function.

View Article and Find Full Text PDF

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms.

View Article and Find Full Text PDF

Introduction: Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions.

Methods: An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect.

View Article and Find Full Text PDF

In several settings, the COVID-19 pandemic determined a negative impact on the occurrence of healthcare-associated infection, particularly for on central lines associated bloodstream infections (CLABSI). In our setting, we observed a significant increase in CLABSI in our intensive care unit (ICU) during 2020 and 2021 vs. 2018 to 2019.

View Article and Find Full Text PDF

Regional anesthesia in postoperative pain management has developed in recent years, especially with the advent of fascial plane blocks. This study aims to compare the ultrasound-guided bilateral erector spinae plane block (ESPB) versus the ultrasound-guided bilateral transversus abdominis plane block (TAPB) on postoperative analgesia after laparoscopic or robotic urologic surgery. This was a prospective observational study; 97 patients (ESPB-group) received bilateral ultrasound-guided ESPB with 20 mL of ropivacaine 0.

View Article and Find Full Text PDF

Superparamagnetic magnetite nanoparticles have been central to numerous investigations in the past few decades for their use in many applications, such as drug delivery, medical diagnostics, magnetic separation, and material science. However, the properties of single magnetic nanoparticles are sometimes not sufficient to accomplish tasks where a strong magnetic response is required. In light of this, aggregated magnetite nanoparticles have been proposed as an alternative advanced material, which may expand and combine some of the advantages of single magnetic nanoparticles, including superparamagnetism, with an enhanced magnetic moment and increased colloidal stability.

View Article and Find Full Text PDF

Seeded emulsion polymerization is one of the best-known methods for preparing polymer particles with a controlled size, composition, and shape. It first requires the preparation of seed particles, which are then swollen with additional monomer (the same as the one used for the seed or a different one), to either increase the seed's size or change its morphology. The use of surfactants plays a central role in guaranteeing the required colloidal stability and contributing to the final shape and structure of the particles by lowering the interfacial energy between the polymer of the seed and the added monomer.

View Article and Find Full Text PDF
Article Synopsis
  • Emulsion polymerization techniques have allowed for exceptional control over the size, distribution, and composition of polymer particles, making them a standard in colloids.
  • Various advanced synthesis methods have been explored, particularly focusing on the creation of particles with unique shapes like dumbbell (protrusions) and dimpled (concavities) forms.
  • The paper reviews the synthesis, functionalization, and applications of these particles, highlighting the similarities in their preparation methods and aiming to encourage more widespread usage and development of better synthetic techniques.
View Article and Find Full Text PDF

Post-synthesis modifications are valuable tools to alter functionalities and induce morphology changes in colloidal particles. Non-spherical polymer particles with Janus characteristics are prepared by combining seeded growth polymerization and selective dissolution. First, spherical polystyrene (PS) particles have been swollen with methyl methacrylate (MMA) with an activated swelling method.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic caused an increase in intensive care unit (ICU) hospitalizations with a rise in morbidity and mortality; nevertheless, there is still little evidence on the impact of the pandemic on antibiotic resistance in ICUs. This is a retrospective, monocentric epidemiological study. The aim of the study was to describe and analyze the impact of the SARS-CoV-2 pandemic on ICU bacterial resistance patterns.

View Article and Find Full Text PDF

Thin nanocomposite polymer films embedding various types of nanoparticles have been the target of abundant research to use them as sensors, smart coatings, or artificial skin. Their characterization is challenging and requires novel methods that can provide qualitative as well as quantitative information about their composition and the spatial distribution of nanoparticles. In this work, we show how lock-in thermography (LIT) can be used to quantify the concentration of gold nanoparticles embedded in polyvinyl alcohol (PVA) films.

View Article and Find Full Text PDF

Conventional synthetic strategies do not allow one to impart structural anisotropy into porous carbons, thus leading to limited control over their textural properties. While structural anisotropy alters the mechanical properties of materials, it also introduces an additional degree of directionality to increase the pore connectivity and thus the flux in the designed direction. Accordingly, in this work the structure of porous carbons prepared from resorcinol-formaldehyde gels has been rendered anisotropic by integrating superparamagnetic colloids to the sol-gel precursor solution and by applying a uniform magnetic field during the sol-gel transition, which enables the self-assembly of magnetic colloids into chainlike structures to template the growth of the gel phase.

View Article and Find Full Text PDF

In the context of the global health issue caused by the growing occurrence of antimicrobial resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a computer-aided drug design (CADD) based on a 'scaffold-hopping' approach for the synthesis and antibacterial evaluation of -Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate ligand.

View Article and Find Full Text PDF

When thinking about colloidal particles, the fist image that comes into mind is that of tiny little polystyrene spheres with a narrow size distribution. While spherical polymer colloids are one of the workhorses of colloid science, scientists have been working on the development of progressively advanced strategies to move beyond particles with spherical shapes, and prepared polymer colloids with more complex morphologies. This short review aims at providing a summary of these developments, focusing primarily on methods applicable to submicron particles, with an eye towards their applications and some discussion about advantages and drawbacks of the various approaches.

View Article and Find Full Text PDF

Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential.

View Article and Find Full Text PDF

Ultrasonication is a widely used and standardized method to redisperse nanopowders in liquids and to homogenize nanoparticle dispersions. One goal of sonication is to disrupt agglomerates without changing the intrinsic physicochemical properties of the primary particles. The outcome of sonication, however, is most of the time uncertain, and quantitative models have been beyond reach.

View Article and Find Full Text PDF
Article Synopsis
  • Cellulose aerogels are a cost-effective and sustainable alternative to silica aerogels, with improved mechanical properties.
  • The study shows that cellulose aerogels exhibit a U-shaped relationship between thermal conductivity and density, finding a minimum thermal conductivity at a specific density.
  • Compression impacts thermal conductivity, lowering it by approximately 5 mW·m·K due to the alignment of cellulose nanofibers, as demonstrated by small angle X-ray scattering.
View Article and Find Full Text PDF

Hypothesis: In spite of the abundant literature on Brownian simulations of the aggregation behavior of colloidal suspensions both under quiescent conditions and in the presence of shear, few works performed simulations including the effect of hydrodynamic interactions. Even fewer works have investigated the effects of shear on the aggregation of electrostatically-stabilized colloidal suspensions.

Simulations: In this work, we employed Brownian dynamics simulations implementing the Rotne-Prager-Yamakawa approximation to account for hydrodynamic interactions and investigated the aggregation kinetics of electrostatically-stabilized colloidal suspensions exposed to simple shear, for various Péclet number values, particle volume fractions and surface potential values.

View Article and Find Full Text PDF

Here, we report the gelation and supercritical drying of ethanol-based silica-resorcinol-melamine-formaldehyde (RMF) composite aerogels with relative concentrations of initial reagents ranging from neat silica to neat RMF alcogels. The as-prepared materials are subsequently supercritically dried with carbon dioxide. Their properties include a thermal conductivity in the 15-20 mW·m·K range even with a silica content as low as 20%.

View Article and Find Full Text PDF
Article Synopsis
  • - The report investigates the effectiveness of dynamic 18F-DOPA PET in evaluating the grading and aggressiveness of pediatric cerebral gliomas, addressing limitations of standard uptake parameters in certain types of tumors.
  • - A retrospective analysis of 15 patients assessed both static and dynamic PET parameters to predict tumor grades and survival outcomes, finding that the shape of the time activity curve (TAC) is a strong indicator of low vs. high-grade gliomas.
  • - Results showed that TAC accumulation shape was significantly associated with longer progression-free and overall survival, making it a more reliable predictor than traditional static parameters in assessing tumor severity and prognosis.
View Article and Find Full Text PDF

The aggregation kinetics of sedimenting colloidal particles under fully destabilized conditions has been investigated over a wide range of particle volume fractions () and Péclet numbers (Pe) using the recent PSE algorithm implementing the Rotne-Prager-Yamakawa (RPY) approximation for long-range Hydrodynamic Interactions (HI). Fast Lubrication Dynamics (FLD) and simple Brownian Dynamics (BD) methods have also been employed to assess the importance of long range hydrodynamic interactions on the resulting dynamics. It has been observed that long-range hydrodynamic interactions are essential to capture the fast aggregation rates induced by the increase in sedimentation rate of clusters with increasing mass, which manifests with an explosive-like cluster growth after a given induction time.

View Article and Find Full Text PDF

The preparation of particles with non-spherical shapes is a challenging endeavor, often requiring a significant ingenuity, complex experimental procedures and difficulties to obtain reproducible results. In this work we prove that monodisperse non-spherical polymer particles possessing asymmetric Janus structure can be easily produced by using an activated swelling method in combination with a control of the rate of free radical polymerization through the addition of the inhibitors 4-methoxyphenol (MEHQ) and O. Monodisperse non cross-linked polystyrene particles, used as seeds, are activated by the addition of an initiator, which promotes their swelling ability, and then swollen with a monomers mixture (methyl methacrylate, glycidyl methacrylate and ethylene glycol dimethacrylate), before being polymerized in presence of both MEHQ and O.

View Article and Find Full Text PDF

This paper presents a dataset of images generated via 3D graphics rendering. The dataset is composed by pictures of the junction between the high-speed shaft and the external bracket of the power generator inside a wind turbine cabin, in presence and absence of oil leaks. Oil leak occurrence is an anomaly that can verify in a zone of interest of the junction.

View Article and Find Full Text PDF