Publications by authors named "Lattanzi R"

Article Synopsis
  • A new approach for real-time volumetric dynamic MRI of the wrist joint is introduced, aimed at improving the evaluation of wrist instability by tracking carpal bone motion during active movement.
  • The study utilized a specialized wrist coil and 3D-printed support platform to capture high-quality 2D images, which were then assembled into dynamic 3D volumes for analysis.
  • Results showed that the method provided high signal-to-noise ratio and accurate visualization of carpal bones, paving the way for advanced segmentation and quantitative assessment of wrist kinematics.
View Article and Find Full Text PDF

Purpose: To develop and characterize the performance of a 128-channel head array for brain imaging at 10.5 tesla and evaluate the potential of brain imaging at this unique, >10 tesla magnetic field.

Methods: The coil is composed of a 16-channel self-decoupled loop transmit/receive array with a 112-loop receive-only (Rx) insert.

View Article and Find Full Text PDF

We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields.

View Article and Find Full Text PDF
Article Synopsis
  • * Genetic variations (polymorphisms) in the PKs and PKR genes have been associated with conditions like infertility, neuroendocrine disorders, Hirschsprung's syndrome, central precocious puberty, and Kallmann syndrome.
  • * The study aims to highlight how these genetic variations impact disease development and outcomes, positioning the PK system as a potential target for therapy and a marker for diagnosis in related health issues.
View Article and Find Full Text PDF
Article Synopsis
  • The study aims to enhance ultrahigh-field brain imaging by evaluating the achievable signal-to-noise ratio (SNR) against the ultimate intrinsic SNR (uiSNR) at 10.5T, and exploring designs to improve SNR for better imaging results.
  • A specialized 16-channel Tx/Rx array and a 64-channel receive-only array were created for use with the 10.5T MRI, with experiments confirming safe operational limits and comparisons of SNR at 10.5T and 7T.
  • Results indicated that the technology can capture significant portions of uiSNR at 10.5T for high-resolution imaging, demonstrating its effectiveness for functional MRI, setting the stage for future advanced studies of the human
View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a 3D vision transformer-based neural network to reconstruct electrical properties (EP) using magnetic resonance measurements from a birdcage coil.
  • The network was trained on synthetic and realistic datasets, showing reliable performance in reconstructing conductivity and permittivity maps with low error rates.
  • The approach successfully identified synthetic lesions and preserved anatomical structures in vivo, paving the way for practical EP reconstruction methods in clinical settings.
View Article and Find Full Text PDF

Femoroacetabular impingement (FAI) is a cause of hip pain and can lead to hip osteoarthritis. Radiological measurements obtained from radiographs or magnetic resonance imaging (MRI) are normally used for FAI diagnosis, but they require time-consuming manual interaction, which limits accuracy and reproducibility. This study compares standard radiologic measurements against radiomics features automatically extracted from MRI for the identification of FAI patients versus healthy subjects.

View Article and Find Full Text PDF
Article Synopsis
  • Different hip pathologies result from abnormal shapes in bone structures like the femur and acetabulum, which can be diagnosed using 3D models derived from MR images.
  • Deep learning techniques can streamline the segmentation of these models, but their effectiveness hinges on the quality and size of training data, which can be enhanced through data augmentation and transfer learning.
  • This study found that data augmentation outperformed transfer learning in automatically segmenting hip structures, achieving higher accuracy and better similarity scores compared to traditional manual methods.
View Article and Find Full Text PDF

Prokineticin 2 (PK2) binds to prokineticin receptor 1 and prokineticin receptor 2 (PKR1 and PKR2, respectively), two G protein-coupled receptors (GPCRs) that can mediate multiple signalling pathways by promoting the elevation of intracellular calcium and cAMP levels, phosphorylation of Akt and activation of ERK and STAT3. This work aims to evidence the conservation of protein sequence and the mechanism of PK2 binding to PKR1 to use the zebrafish model for the identification of new drugs as targets of prokineticin receptors. To this end, we first demonstrated that the zebrafish genes pk2 and pkr1 are phylogenetically related to orthologous mammalian genes by constructing evolutionary trees and performing syntenic analyses.

View Article and Find Full Text PDF

The prokineticin system plays a role in hypothalamic neurons in the control of energy homeostasis. Prokineticin receptors (PKR1 and PKR2), like other G-protein-coupled receptors (GPCRs) are involved in the regulation of energy intake and expenditure and are modulated by the accessory membrane protein 2 of the melanocortin receptor (MRAP2). The aim of this work is to characterise the interaction and regulation of the non-melanocortin receptor PKR1 by MRAP2a in zebrafish (zMRAP2a) in order to use zebrafish as a model for the development of drugs targeting accessory proteins that can alter the localisation and activity of GPCRs.

View Article and Find Full Text PDF

Purpose: To introduce an alternative idea for fat suppression that is suited both for low-field applications where conventional fat-suppression approaches become ineffective due to narrow spectral separation and for applications with strong B0 homogeneities.

Methods: Separation of fat and water is achieved by sweeping the frequency of RF saturation pulses during continuous radial acquisition and calculating frequency-resolved images using regularized iterative reconstruction. Voxel-wise signal-response curves are extracted that reflect tissue's response to RF saturation at different frequencies and allow the classification into fat or water.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to enhance brain imaging at 10.5 Tesla (T) by developing multichannel transmit and receive arrays to achieve the best possible signal-to-noise ratio (uiSNR).
  • A new 16-channel transmit/receive array was created, alongside a 64-channel receive-only array, and underwent testing to ensure safety for human use, ultimately receiving FDA approval.
  • Results showed that the new configuration significantly improved imaging quality, matching the effectiveness of lower-field setups while demonstrating high-resolution brain imaging capabilities for the first time at this field strength.
View Article and Find Full Text PDF

We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature VarNet, which propagates information throughout the cascades of the network in an N-channel feature-space instead of a 2-channel feature-space. Then, we add an attention layer that utilizes the spatial locations of Cartesian undersampling artifacts to further improve performance.

View Article and Find Full Text PDF

Purpose: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs.

Methods: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has experienced remarkable advancements in the integration of artificial intelligence (AI) for image acquisition and reconstruction. The availability of raw k-space data is crucial for training AI models in such tasks, but public MRI datasets are mostly restricted to DICOM images only. To address this limitation, the fastMRI initiative released brain and knee k-space datasets, which have since seen vigorous use.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a family of cell membrane receptors that couple and activate heterotrimeric G proteins and their associated intracellular signalling processes after ligand binding. Although the carboxyl terminal of the receptors is essential for this action, it can also serve as a docking site for regulatory proteins such as the β-arrestins. Prokineticin receptors (PKR1 and PKR2) are a new class of GPCRs that are able to activate different classes of G proteins and form complexes with β-arrestins after activation by the endogenous agonists PK2.

View Article and Find Full Text PDF

The biological substrate of persistent post-COVID-19 hyposmia is still unclear. However, as many neurodegenerative diseases present with smell impairment at onset, it may theoretically reflect degeneration within the central olfactory circuits. However, no data still exist regarding the post-COVID-19 patients.

View Article and Find Full Text PDF

Purpose: Recent numerical and empirical results proved that high permittivity materials (HPM) used in pads placed near the subject or directly integrated with coils can increase the SNR and reduce the specific absorption rate (SAR) in MRI. In this paper, we propose an analytical investigation of the effect on the magnetic field distribution of a layer of HPM surrounding an anatomy-mimicking cylindrical sample.

Methods: The study is based on a reformulation of the Mie scattering for cylindrical geometry, following an approach recently introduced for spherical samples.

View Article and Find Full Text PDF

Melanocortin receptor accessory protein 2 (MRAP2) is a membrane protein that binds multiple G protein-coupled receptors (GPCRs) involved in the control of energy homeostasis, including prokineticin receptors. These GPCRs are expressed both centrally and peripherally, and their endogenous ligands are prokineticin 1 (PK1) and prokineticin 2 (PK2). PKRs couple all G-protein subtypes, such as Gαq/11, Gαs, and Gαi, and recruit β-arrestins upon PK2 stimulation, although the interaction between PKR2 and β-arrestins does not trigger receptor internalisation.

View Article and Find Full Text PDF

Laryngeal cancer accounts for one-third of all head and neck tumors, with squamous cell carcinoma (SCC) being the most predominant type, followed by neuroendocrine tumors. Chromogranins, are commonly used as biomarkers for neuroendocrine tumors, including laryngeal cancer. It has been reported that secretogranin VGF, a member of the chromogranin family, can be also used as a significant biomarker for neuroendocrine tumors.

View Article and Find Full Text PDF

Far more publications are available for osteoarthritis of the knee than of the hip. Recognizing this research gap, the Arthritis Foundation (AF), in partnership with the Hospital for Special Surgery (HSS), convened an in-person meeting of thought leaders to review the state of the science of and clinical approaches to hip osteoarthritis. This article summarizes the recommendations gleaned from 5 presentations given in the "early hip osteoarthritis" session of the 2023 Hip Osteoarthritis Clinical Studies Conference, which took place on February 17 and 18, 2023, in New York City.

View Article and Find Full Text PDF

Purpose: To introduce a method for the estimation of the ideal current patterns (ICP) that yield optimal signal-to-noise ratio (SNR) for realistic heterogeneous tissue models in MRI.

Theory And Methods: The ICP were calculated for different surfaces that resembled typical radiofrequency (RF) coil formers. We constructed numerical electromagnetic (EM) bases to accurately represent EM fields generated by RF current sources located on the current-bearing surfaces.

View Article and Find Full Text PDF
Article Synopsis
  • Prokineticins (PKs) are small peptides discovered two decades ago, now recognized for their various roles as angiogenic, anorectic, proinflammatory agents, and their involvement in different diseases, making them potential biomarkers.
  • PKs interact with two receptors, PKR1 and PKR2, which have unique therapeutic potentials in treating conditions like cardiovascular, metabolic, neural diseases, pain, and cancer.
  • The article reviews the functions of the PK family, highlights knowledge gaps about their receptors and ligands, and suggests that understanding these proteins better could lead to new, safe treatment strategies.
View Article and Find Full Text PDF

Introduction: Femoroacetabular Impingement (FAI) is a hip pathology characterized by impingement of the femoral head-neck junction against the acetabular rim, due to abnormalities in bone morphology. FAI is normally diagnosed by manual evaluation of morphologic features on magnetic resonance imaging (MRI). In this study, we assess, for the first time, the feasibility of using radiomics to detect FAI by automatically extracting quantitative features from images.

View Article and Find Full Text PDF