Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group.
View Article and Find Full Text PDFNanocellulose is a versatile cellulosic nanomaterial that can be used in many application areas. Applying different preparation strategies leads to different types of nanocellulose. In this study, nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC) were prepared from lesser known wood species, viz.
View Article and Find Full Text PDFInspired by nature, cellulose extracted from plant wastes has been explored, due to its great potential as an alternative for synthetic fiber and filler that contributes to structural performance. The drive of this study was to extract, treat, and evaluate the characteristics of rice straw (RS) ( L.) cellulose as a biodegradable reinforcement to be utilized in polymer base materials.
View Article and Find Full Text PDFNanoscale Res Lett
November 2020
Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest.
View Article and Find Full Text PDFA new cellulose nanocrystal-reduced graphene oxide (CNC-rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC-rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior.
View Article and Find Full Text PDFAcacia mangium, a fast growing tree is widely planted in Malaysia. Converting Acacia wood into nanocellulose could create new value added products for forest-based industry. Nanocrystalline cellulose (NCC) was prepared from Acacia mangium wood pulp via 64wt% sulfuric acid hydrolysis.
View Article and Find Full Text PDFThis article reports on the successful preparation and characterization of cellulose nanocrystals (CNCs) surface-modified with polylactide (PLA) and poly(butylene succinate) (PBS) binary mixed homopolymer brushes. Their synthesis was designed as a three-step procedure combining polyester synthesis and surface-modification of CNCs with simultaneous polyester grafting via a heterogeneous copper(I)-catalyzed azide-alkyne cycloaddition reaction. For comparison, single homopolymer brushes tethered to CNCs (PLLA-g-CNC and PBSBDEMPAM-g-CNC) were obtained applying the same procedure.
View Article and Find Full Text PDFPyridinium-grafted-cellulose nanocrystals were prepared by a simple one-pot reaction using 4-(1-bromoethyl/bromomethyl)benzoic acid, pyridine and cellulose nanocrystals (CNCs). The grafting consists of an esterification reaction between 4-(1-bromoethyl/bromomethyl)benzoic acid and CNCs and a nucleophilic attack on the C-Br bond of 4-(1-bromoethyl/bromomethyl)benzoic acid by pyridine. This reaction simplifies existing cationization methods, which leads to a higher grafting density while retaining the CNC crystallinity.
View Article and Find Full Text PDF