Taurine is a semi-essential sulphur containing amino acid derived from methionine and cysteine metabolism. Taurine has several biological processes such as hypoglycemic action, antioxidation, and detoxification. In this study we evaluated the role of taurine in pancreatic islets development, since the endocrine pancreas undergoes significant modifications during neonatal life.
View Article and Find Full Text PDFTaurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. We have previously reported that chronic supplementation of taurine in drinking water to mice increases brain excitability, mainly through alterations in the inhibitory GABAergic system. In this study we investigated the effects of chronic versus acute taurine treatment on anxiety-like and locomotor behaviors using two behavioral tests: elevated plus-maze and open-field.
View Article and Find Full Text PDFAge-related impairment of central functions is though to result from alterations of neurochemical indices of synaptic function. These neurochemical modifications involve structural proteins, neurotransmitters, neuropeptides and related receptors. Several studies demonstrated that GABA receptors, glutamic acid decarboxylase (GAD65&67), and different subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging.
View Article and Find Full Text PDFIncreased seizure susceptibility is a feature of the mouse model for fragile X that has parallels in the hyperarousal and prevalence of seizures in the fragile X syndrome. Our investigation of the basis for the increased seizure susceptibility of the fragile X mouse indicated a reduction in GABA(A) receptor expression and increased expression of glutamic acid decarboxylase (GAD), the enzyme responsible for GAB(A) synthesis. Taurine-fed mice also show these GABAergic alterations.
View Article and Find Full Text PDF