Headwater streams drain over 70% of the land in the United States with headwater wetlands covering 6.59 million hectares. These ecosystems are important landscape features in the southeast United States, with underlying effects on ecosystem health, water yield, nutrient cycling, biodiversity, and water quality.
View Article and Find Full Text PDFHuman-induced nitrogen-phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio.
View Article and Find Full Text PDFRainfall kinetic energy (RKE) constitutes one of the most critical factors that drive rainfall erosivity on surface soil. Direct measurements of RKE are limited, relying instead on the empirical relations between kinetic energy and rainfall intensity ( relation), which have not been well regionalized for data-scarce regions. Here, we present the first global rainfall microphysics-based RKE () flux retrieved from radar reflectivity at different frequencies.
View Article and Find Full Text PDFA two-layer model based on the integrated form of Richards' equation (RE) was recently developed to simulate the soil water movement in the roots layer and the vadose zone with a relatively shallow and dynamic water table. The model simulates thickness-averaged volumetric water content and matric suction as opposed to point values and was numerically verified for three soil textures using HYDRUS as a benchmark. However, the strengths and limitations of the two-layer model and its performance in stratified soils and under actual field conditions have not been tested.
View Article and Find Full Text PDFExtreme rainfalls often lead to large amounts of nitrogen (N) loss from river basins. However, the composition and spatial variation of N loss caused by extreme events and the effects of control measures are not well understood. To shed light into this question, the Soil and Water Assessment Tool (SWAT) was used to evaluate the spatiotemporal characteristics of organic and inorganic nitrogen (ON and IN) losses in the coastal basins of Laizhou Bay during typhoons Rumbia and Lekima.
View Article and Find Full Text PDFThis study explored how the characterization of forest processes in hydrologic models affects watershed hydrological responses. To that end, we applied the widely used Soil and Water Assessment Tool (SWAT) model to two forested watersheds in the southeastern United States. Although forests can cover a large portion of watersheds, tree attributes such as leaf area index (LAI), biomass accumulation, and processes such as evapotranspiration (ET) are rarely calibrated in hydrological modeling studies.
View Article and Find Full Text PDFSimulating water moisture flow in variably saturated soils with a relatively shallow water table is challenging due to the high nonlinear behavior of Richards' equation (RE). A two-layer approximation of RE was derived in this paper, which describes vertically-averaged soil moisture content and flow dynamics in the root zone and the unsaturated soil below. To this end, the partial differential equation (PDE) describing RE was converted into two-coupled ordinary differential equations (ODEs) describing dynamic vertically-averaged soil moisture variations in the two soil zones subject to a deep or shallow water table in addition to variable soil moisture flux and pressure conditions at the surface.
View Article and Find Full Text PDFVegetated buffers and filter strips are a widely used Best Management Practice (BMP) for enhancing streamside ecosystem quality and water quality improvement through nonpoint source pollutant removal. Most existing studies are either site-specific, rely on limited data points, or evaluate buffer width and slope as the only design variables for predicting sediment reduction, not considering other parameters such as soil texture, vegetation types, and runoff loads that can significantly influence the buffer efficiency. In this paper, we carry out a meta-analysis of published studies and fit regression models to explore the sediment removal capacity of riparian buffers.
View Article and Find Full Text PDFForests play a critical role in the hydrologic cycle, impacting the surface and groundwater dynamics of watersheds through transpiration, interception, shading, and modification of the atmospheric boundary layer. It is therefore critical that forest dynamics are adequately represented in watershed models, such as the widely applied Soil and Water Assessment Tool (SWAT). SWAT's default parameterization generally produces unrealistic forest growth predictions, which we address here through an improved representation of forest dynamics using species-specific re-parameterizations.
View Article and Find Full Text PDFThis study investigated potential changes in flow, total suspended solid (TSS) and nutrient (nitrogen and phosphorous) loadings under future climate change, land use/cover (LULC) change and combined change scenarios in the Wolf Bay watershed, southern Alabama, USA. Four Global Circulation Models (GCMs) under three Special Report Emission Scenarios (SRES) of greenhouse gas were used to assess the future climate change (2016-2040). Three projected LULC maps (2030) were employed to reflect different extents of urbanization in future.
View Article and Find Full Text PDFThe integrated effects of the many risk factors associated with West Nile virus (WNV) incidence are complex and not well understood. We studied an array of risk factors in and around Atlanta, GA, that have been shown to be linked with WNV in other locations. This array was comprehensive and included climate and meteorological metrics, vegetation characteristics, land use / land cover analyses, and socioeconomic factors.
View Article and Find Full Text PDFJ Vector Ecol
December 2015
Population growth and urbanization have increased the potential habitats, and consequently the abundance of Culex quinquefasciatus, the southern house mosquito, a vector of West Nile Virus in urban areas. Water quality is critical in larval habitat distribution and in providing microbial food resources for larvae. A mesocosm experiment was designed to demonstrate which specific components of water chemistry are conducive to larval Culex mosquitoes.
View Article and Find Full Text PDFBuildup of phosphorus (P) in agricultural soils and transport of P to nearby surface waters due to excessive, long-term application of poultry litter is an environmental concern in many poultry-producing states. Watershed models are often used to quantify soil and water quality impacts of poultry litter applications. However, depending on how P transport is simulated in watershed models, the anticipated impact could be quite different.
View Article and Find Full Text PDFIt is widely recognized that forest and water resources are intricately linked. Globally, changes in forest cover to accommodate agriculture and urban development introduce additional challenges for water management. The U.
View Article and Find Full Text PDFLand use and land cover (LULC) play a central role in fate and transport of water quality (WQ) parameters in watersheds. Developing relationships between LULC and WQ parameters is essential for evaluating the quality of water resources. In this paper, we present an artificial neural network (ANN)-based methodology to predict WQ parameters in watersheds with no prior WQ data.
View Article and Find Full Text PDFAgricultural production in the state of Alabama, USA, is mostly rain-fed, because of which it is vulnerable to drought during growing season. Since Alabama receives a significant portion of its annual precipitation during winter months, the goal of this study was to evaluate the feasibility of water withdrawal from streams during winter months for irrigation in the growing season. The Soil and Water Assessment Tool (SWAT) was used to estimate the quantity of water that can be sustainably withdrawn from streams during winter high flow periods.
View Article and Find Full Text PDFAn index based method is developed that ranks the subwatersheds of a watershed based on their relative impacts on watershed response to anticipated land developments, and then applied to an urbanizing watershed in Eastern Pennsylvania. Simulations with a semi-distributed hydrologic model show that computed low- and high-flow frequencies at the main outlet increase significantly with the projected landscape changes in the watershed. The developed index is utilized to prioritize areas in the urbanizing watershed based on their contributions to alterations in the magnitude of selected flow characteristics at two spatial resolutions.
View Article and Find Full Text PDF