Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot.
View Article and Find Full Text PDFThis article addresses the issue of using terms and concepts in motor control that are ill-defined, undefined, and/or imported from nonbiological fields. In many of such cases, the discourse turns nonscientific and unproductive. Some of such terms are potentially useful but need to be properly and exactly defined.
View Article and Find Full Text PDFThe review addresses the central concept of the uncontrolled manifold (UCM) hypothesis, which has become a major framework for analysis of performance-stabilizing motor synergies. The major goals are to summarize the status quo in the field and to ask new questions stimulating new studies. We focus on a few main questions: What is the UCM? What are the likely neural origins of the UCM? How is the UCM reflected in movement patterns? Are properties of the UCM similar in all directions? We contrast experience-based features of movements seen very soon after the movement initiation versus those based on on-line sensory feedback signals.
View Article and Find Full Text PDFWe explored two types of anticipatory synergy adjustments (ASA) during accurate four-finger total force production task. The first type is a change in the index of force-stabilizing synergy during a steady state when a person is expecting a signal to produce a quick force change, which is seen even when the signal does not come (steady-state ASA). The other type is the drop in in the synergy index prior to a planned force change starting at a known time (transient ASA).
View Article and Find Full Text PDFWe tested a hypothesis on force-stabilizing synergies during four-finger accurate force production at three levels: (1) The level of the reciprocal and coactivation commands, estimated as the referent coordinate and apparent stiffness of all four fingers combined; (2) The level of individual finger forces; and (3) The level of firing of individual motor units (MU). Young, healthy participants performed accurate four-finger force production at a comfortable, non-fatiguing level under visual feedback on the total force magnitude. Mechanical reflections of the reciprocal and coactivation commands were estimated using small, smooth finger perturbations applied by the "inverse piano" device.
View Article and Find Full Text PDFWe explored unintentional drifts of finger forces during force production and matching task. Based on earlier studies, we predicted that force matching with the other hand would reduce or stop the force drift in instructed fingers while uninstructed (enslaved) fingers remain unaffected. Twelve young, healthy, right-handed participants performed two types of tasks with both hands (task hand and match hand).
View Article and Find Full Text PDFWe review a body of literature related to the drawing and recognition of geometrical two-dimensional linear drawings including letters. Handwritten letters are viewed not as two-dimensional geometrical objects but as one-dimensional trajectories of the tip of the implement. Handwritten letters are viewed as composed of a small set of kinematic primitives.
View Article and Find Full Text PDFWe explored force-stabilizing synergies during accurate four-finger constant force production tasks in spaces of finger modes (commands to fingers computed to account for the finger interdependence) and of motor unit (MU) firing frequencies. The main specific hypothesis was that the multifinger synergies would disappear during unintentional force drifts without visual feedback on the force magnitude, whereas MU-based synergies would be robust to such drifts. Healthy participants performed four-finger accurate cyclical force production trials followed by trials of constant force production.
View Article and Find Full Text PDFWe applied the recently introduced concept of intramuscle synergies in spaces of motor units (MUs) to quantify indexes of such synergies in the tibialis anterior during ankle dorsiflexion force production tasks and their changes with fatigue. We hypothesized that MUs would be organized into robust groups (MU modes), which would covary across trials to stabilize force magnitude, and the indexes of such synergies would drop under fatigue. Healthy, young subjects ( = 15; 8 females) produced cyclical, isometric dorsiflexion forces while surface electromyography was used to identify action potentials of individual MUs.
View Article and Find Full Text PDFWe studied anticipatory and compensatory postural adjustments (APAs and CPAs) associated with self-triggered postural perturbations in conditions with changes in the initial body orientation. In particular, we were testing hypotheses on adjustments in the reciprocal and coactivation commands, role of proximal vs. distal muscles, and correlations between changes in indices of APAs and CPAs.
View Article and Find Full Text PDFThe concept of synergies has been used to address the grouping of motor elements contributing to a task with the covariation of these elements reflecting task stability. This concept has recently been extended to groups of motor units with parallel scaling of the firing frequencies with possible contributions of intermittent recruitment (MU-modes) in compartmentalized flexor and extensor muscles of the forearm stabilizing force magnitude in finger pressing tasks. Here, we directly test for the presence and behavior of MU-modes in the tibialis anterior, a non-compartmentalized muscle.
View Article and Find Full Text PDFWe explored the phenomenon of unintentional force drift seen in the absence of visual feedback during knee extension contractions in isometric conditions. Based on the importance of knee extensors for the anti-gravity function, we hypothesized that such force drifts would be slower and smaller compared to those reported for the upper extremities. We also explored possible effects of foot dominance and gender on the force drifts.
View Article and Find Full Text PDFWe explored the phenomena of force drifts and unintentional finger force production (enslaving), and their dependence on visual feedback. Predictions have been drawn based on the theory of control with spatial referent coordinates for condition with feedback on instructed (master) finger force, enslaved finger force, and total force for one-hand and two-hand tasks. Subjects produced force under the different feedback conditions without their knowledge.
View Article and Find Full Text PDFWe accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control-the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis-to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies.
View Article and Find Full Text PDFThe review covers a range of topics related to the role of the antagonist muscles in agonist-antagonist pairs within the theory of the neural control of movements with spatial referent coordinates, the principle of abundance, and the uncontrolled manifold hypothesis. It starts with the mechanical role of the antagonist in stopping movements and providing necessary levels of effector mechanical characteristics for fast movements. Further, it discusses the role of antagonist muscle activation bursts during voluntary movements, force production, and postural tasks.
View Article and Find Full Text PDFMotor synergies, i.e., neural mechanisms that organize multiple motor elements to ensure stability of actions, are affected by several neurological condition.
View Article and Find Full Text PDFWe used the framework of the uncontrolled manifold hypothesis to explore force-stabilizing synergies and motor equivalence in the spaces of individual motor unit (MU) firing frequencies. Healthy subjects performed steady force production tasks by pressing with one finger or three fingers of a hand. Surface EMG was used to identify individual MU action potentials.
View Article and Find Full Text PDFIn this study, we address the question: Can the central nervous system stabilize vertical posture in the abundant space of neural commands? We assume that the control of vertical posture is associated with setting spatial referent coordinates (RC) for the involved muscle groups, which translates into two basic commands, reciprocal and co-activation. We explored whether the two commands co-varied across trials to stabilize the initial postural state. Young, healthy participants stood quietly against an external horizontal load and were exposed to smooth unloading episodes.
View Article and Find Full Text PDFIn this paper, we review the legacy of Gerald (Gerry) Gottlieb in various fields related to the neural control of human movement. His studies on the myotatic (stretch) reflex and postmyotatic responses to ankle joint perturbations paved the way for current explorations of long-loop reflexes and their role in the control of movement. The dual-strategy hypothesis introduced order into a large body of literature on the triphasic muscle activation patterns seen over a variety of voluntary movements in healthy persons.
View Article and Find Full Text PDFPhys Ther Res
September 2021
We review the current views on the control and coordination of movements following the traditions set by Nikolai Bernstein. In particular, we focus on the theory of neural control of effectors - from motor units to individual muscles, to joints, limbs, and to the whole body - with spatial referent coordinates organized into a hierarchy with multiple few-to-many mappings. Further, we discuss synergies ensuring stability of natural human movements within the uncontrolled manifold hypothesis.
View Article and Find Full Text PDFMotor Control
January 2023
This review of movement stability, optimality, and agility is based on the theory of motor control with changes in spatial referent coordinates for the effectors, the principle of abundance, and the uncontrolled manifold hypothesis. A new optimality principle is suggested based on the concept of optimal sharing corresponding to a vector in the space of elemental variables locally orthogonal to the uncontrolled manifold. Motion along this direction is associated with minimal components along the relatively unstable directions within the uncontrolled manifold leading to a minimal motor equivalent motion.
View Article and Find Full Text PDFThe goal of the study was to explore the effects of hand dominance and muscle function (prime mover vs. supporting muscle) on recently discovered intra-muscle synergies as potential windows into their neural origin. Healthy right-handed subjects performed accurate cyclical force production tasks while pressing with the middle phalanges and distal phalanges of the fingers of the dominant and non-dominant hand.
View Article and Find Full Text PDF