Publications by authors named "Lata Kaphalia"

Background: Chronic alcohol consumption/misuse is a significant risk factor for pneumonia and lung infection leading to the development of chronic pulmonary disorders such as chronic obstructive pulmonary disease (COPD) and lung fibrosis. In this study, we sought to delineate the mechanism of alcohol-associated lung disease. We did so by measuring in vitro mitochondrial, endoplasmic reticulum (ER) oxidative stress in human bronchial epithelial cells (hBECs) treated with ethanol and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters or FAEEs) metabolites.

View Article and Find Full Text PDF

Aims: Dysregulation of pancreatic fat and lipotoxic inflammation are common clinical findings in alcoholic chronic pancreatitis (ACP). In this study, we investigated a relationship between dysregulated pancreatic lipid metabolism and the development of injury in a chronic ethanol (EtOH) feeding model of hepatic alcohol dehydrogenase 1- deficient (ADH) deer mice.

Methods: ADH and hepatic ADH normal (ADH) deer mice were fed a liquid diet containing 3 % EtOH for three months and received a single gavage of binge EtOH with/without fatty acid ethyl esters (FAEEs) one week before the euthanasia.

View Article and Find Full Text PDF

Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase-deficient (ADH) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP.

View Article and Find Full Text PDF

Background: Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disorder of the exocrine pancreatic gland. A previous study from this laboratory showed that ethanol (EtOH) causes cytotoxicity, dysregulates AMPKα and ER/oxidative stress signaling, and induces inflammatory responses in primary human pancreatic acinar cells (hPACs). Here we examined the differential cytotoxicity of EtOH and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters; FAEEs) metabolites in hPACs was examined to understand the metabolic basis and mechanism of ACP.

View Article and Find Full Text PDF

Primary toxicity targets of alcohol and its metabolites in the pancreas are cellular energetics and endoplasmic reticulum (ER). Therefore, the role of AMP-Activated Protein Kinase (AMPKα) in amelioration of ethanol (EtOH)-induced pancreatic acinar cell injury including ER/oxidative stress, inflammatory responses, the formation of fatty acid ethyl esters (FAEEs) and mitochondrial bioenergetics were determined in human pancreatic acinar cells (hPACs) and AR42J cells incubated with/without AMPKα activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)]. EtOH treated hPACs showed concentration and time-dependent increases for FAEEs and inactivation of AMPKα, along with the upregulation of ACC1 and FAS (key lipogenic proteins) and downregulation of CPT1A (involved β-oxidation of fatty acids).

View Article and Find Full Text PDF

Ethanol (EtOH) metabolism itself can be a predisposing factor for initiation of alcoholic liver disease (ALD). Therefore, a dose dependent study to evaluate liver injury was conducted in hepatic alcohol dehydrogenase (ADH) deficient (ADH) and ADH normal (ADH) deer mice fed 1%, 2% or 3.5% EtOH in the liquid diet daily for 2 months.

View Article and Find Full Text PDF

Background: Chronic alcohol consumption impairs alveolar macrophage's (AM) function and increases risk for developing lung infection and pneumonia. However, the mechanism and metabolic basis of alcohol-induced AM dysfunction leading to lung infection are not well defined, but may include altered ethanol (EtOH) and reactive oxygen species metabolism and cellular energetics. Therefore, oxidative stress, endoplasmic reticulum (ER) stress, the formation of fatty acid ethyl esters [FAEEs, nonoxidative metabolites of EtOH], AMP-activated protein kinase (AMPK) signaling, and phagocytic function were examined in freshly isolated AM incubated with EtOH.

View Article and Find Full Text PDF

Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. We report a systems-level pharmacoproteomics in a standardized murine model of toll-like receptor TLR3-NFκB/RelA innate inflammation in the absence or presence of a highly selective BRD4 inhibitor (ZL0454) or nonselective bromodomain and extraterminal domain inhibitor (JQ1).

View Article and Find Full Text PDF

Background: Frequent exacerbations of allergic asthma lead to airway remodeling and a decrease in pulmonary function, producing morbidity. Cat dander is an aeroallergen associated with asthma risk.

Objective: We sought to elucidate the mechanism of cat dander-induced inflammation-remodeling.

View Article and Find Full Text PDF

Background: Chronic alcohol abuse, a major risk factor for such diseases as hepatitis and cirrhosis, impairs hepatic alcohol dehydrogenase (ADH; key ethanol [EtOH]-metabolizing enzyme). Therefore, differentially altered hepatic and plasma proteomes were identified in chronic EtOH feeding model of hepatic ADH-deficient (ADH ) deer mice to understand the metabolic basis of alcoholic liver disease (ALD).

Methods: ADH deer mice were fed 3.

View Article and Find Full Text PDF

Objectives: The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis.

Methods: Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry.

View Article and Find Full Text PDF

Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure.

View Article and Find Full Text PDF

Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model.

View Article and Find Full Text PDF

Chronic alcohol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). A significant amount of ingested alcohol reaches airway passages in the lungs and can be metabolized via oxidative and non-oxidative pathways. About 90% of the ingested alcohol is metabolized via hepatic alcohol dehydrogenase (ADH)-catalyzed oxidative pathway.

View Article and Find Full Text PDF

Methylenedianiline (DAPM) is considered a cholangiodestructive toxicant in vivo. Increases in biliary inorganic phosphate (P(i)) and glucose occur prior to biliary epithelial cell (BEC) injury, which could be due to increased paracellular permeability and/or impairment of P(i) and glucose uptake by BEC. To evaluate these possibilities, we induced mild injury [loss of BEC from major bile ducts (6 h), ultrastructural alterations in BEC mitochondria and Golgi cisternae (3 h), and striking increases in biliary P(i) and glucose (3-6 h)] with 25 mg DAPM/kg and then assessed temporal alterations in tight junction (TJ) permeability by measuring bile to plasma (B:P) ratios of [(3)H]-inulin.

View Article and Find Full Text PDF

A rapid and sensitive high-performance liquid chromatographic method was developed for determination of diclofenac and its major metabolite, 4'-hydroxydiclofenac, in serum from rats treated with diclofenac. The method is simple with a one-step extraction procedure, isocratic HPLC separation, and UV detection at 280 nm. Use of N-phenylanthranilic acid as the internal standard provided good accuracy without interference by endogenous compounds or 5-hydroxydiclofenac, another metabolite of interest.

View Article and Find Full Text PDF

A proteome profiling approach was used to compare effects of two toxicants, 1,1-dicloroethylene (DCE) and diclofenac, which covalently adduct hepatic proteins. Bile was examined as a potential source of protein alterations since both toxicants target the hepatic biliary canaliculus. Bile was collected before and after toxicant treatment.

View Article and Find Full Text PDF