The aim of this study was to determine changes in clinical and biomechanical measures of spasticity after administering galvanic vestibular stimulation in patients with a complete spinal cord injury (SCI). The spasticity in the lower limbs was assessed using the Modified Ashworth Scale and the pendulum test in seven SCI patients (grade A on the ASIA Impairment Scale) before (0), immediately after (0), and at 5 and 30 min after the real versus sham galvanic vestibular stimulation (15 s each, anode over the right mastoid). Overall, the changes in spasticity were not significantly different between the real and sham galvanic vestibular stimulation.
View Article and Find Full Text PDFImprovement in gait abilities is one of the important goals of stroke rehabilitation. The Walkaround is a new postural assistance device for gait training, which allows an early start for gait training. This device provides body postural support (BPS) and trunk orientation by means of a lumbar belt that is connected to a powered rolling walker.
View Article and Find Full Text PDFWe present a low-frequency stimulation method via multi-pad electrodes for delaying muscle fatigue. We compared two protocols for muscle activation of the quadriceps in paraplegics. One protocol involved a large cathode at 30 HZ (HPR, high pulse-rate), and the other involved four smaller cathodes at 16 HZ (LPR, low pulse-rate).
View Article and Find Full Text PDFWe developed the STIMBELT, an electrical stimulation system that comprises a lumbar belt with up to eight pairs of embedded electrodes and an eight-channel electronic stimulator. The STIMBELT is an assistive system for the treatment of low-back pain (LBP). We describe here technical details of the system and summarize the results of its application in individuals with subacute and chronic LBP.
View Article and Find Full Text PDFObjective: To assess the correlation between kinematic measures of movement (Drawing Test) and a clinical measure of spasticity (Ashworth Scale).
Design: Correlation study of Drawing Test and the Ashworth Scale scores.
Setting: Inpatient rehabilitation center.
There are indications that both intensive exercise and electrical stimulation have a beneficial effect on arm function in post-stroke hemiplegic patients. We recommend the use of Functional Electrical Therapy (FET), which combines electrical stimulation of the paretic arm and intensive voluntary movement of the arm to exercise daily functions. FET was applied 30 min daily for 3 weeks.
View Article and Find Full Text PDFThis paper describes a clinical randomized single-blinded study of the effects of Functional Electrical Therapy (FET) on the paretic arms of subjects with acute hemiplegia caused by strokes. FET is an exercise program that comprises voluntary arm movements and opening, closing, holding, and releasing of objects that are assisted by a neural prosthesis (electrical stimulation). FET consisted of a 30 min everyday exercise for 3 consecutive weeks in addition to conventional therapy.
View Article and Find Full Text PDFResults from a clinical evaluation of Functional Electrical Therapy (FET) in chronic hemiplegic subjects are presented. FET is an intensive exercise that integrates voluntary maximized manipulation and augmented grasping by electrical stimulation of forearm and hand muscles. A total of 16 chronic hemiplegic subjects participated in a six-month long study.
View Article and Find Full Text PDFA rule-based control and its application in functional electrical stimulation (FES) assisted walking of subjects with paraplegia are described in this paper. The design of rules for control comprises the following two steps: (1) determination of muscle activation patterns by using a fully customized spatial (3D) model of paraplegic walking, and (2) learning of rules, that is, correlation between the muscle activation patterns and kinematics of walking by means of an artificial neural network. The adopted FES system activated eight muscle groups with surface electrodes.
View Article and Find Full Text PDFFunctional electrical therapy (FET) is a new term describing a combination of functional electrical stimulation that generates life-like movement and intensive exercise in humans with central nervous system lesions. We hypothesized that FET can promote a significant recovery of functioning if applied in subacute stroke subjects. The study included 16 stroke subjects divided into a low functioning group (LFG) and a high functioning group (HFG) based on their ability to control wrist and fingers and randomly associated into FET and controls.
View Article and Find Full Text PDF