Recent studies have revealed that arginine is the most favorable target of amino acid alteration in most cancer types and it has been suggested that the high preference for arginine mutations reflects the critical roles of this amino acid in the function of proteins. High rates of mutations of arginine residues in cancer, however, might also be due to increased mutability of arginine codons of the CGN family as the CpG dinucleotides of these codons may be methylated. In the present work we have analyzed spectra of single base substitutions of cancer genes (oncogenes, tumor suppressor genes) and passenger genes in cancer tissues to assess the contributions of CpG hypermutability and selection to arginine mutations.
View Article and Find Full Text PDFIn most eukaryotes and prokaryotes TGA is used at a significantly higher frequency than TAG as termination codon of protein-coding genes. Although this phenomenon has been recognized several years ago, there is no generally accepted explanation for the TAG-TGA paradox. Our analyses of human mutation data revealed that out of the eighteen sense codons that can give rise to a nonsense codon by single base substitution, the CGA codon is exceptional: it gives rise to the TGA stop codon at an order of magnitude higher rate than the other codons.
View Article and Find Full Text PDFde Magalhães has shown recently that most human genes have several papers in PubMed mentioning cancer, leading the author to suggest that every gene is associated with cancer, a conclusion that contradicts the widely held view that cancer is driven by a limited number of cancer genes, whereas the majority of genes are just bystanders in carcinogenesis. We have analyzed PubMed to decide whether publication metrics supports the distinction of bystander genes and cancer genes. The dynamics of publications on known cancer genes followed a similar pattern: seminal discoveries triggered a burst of cancer-related publications that validated and expanded the discovery, resulting in a rise both in the number and proportion of cancer-related publications on that gene.
View Article and Find Full Text PDFThe hedgehog (Hh) and Wnt pathways, crucial for the embryonic development and stem cell proliferation of Metazoa, have long been known to have similarities that argue for their common evolutionary origin. A surprising additional similarity of the two pathways came with the discovery that WIF1 proteins are involved in the regulation of both the Wnt and Hh pathways. Originally, WIF1 (Wnt Inhibitory Factor 1) was identified as a Wnt antagonist of vertebrates, but subsequent studies have shown that in , the WIF1 ortholog serves primarily to control the distribution of Hh.
View Article and Find Full Text PDFDivision of labor and establishment of the spatial pattern of different cell types of multicellular organisms require cell type-specific transcription factor modules that control cellular phenotypes and proteins that mediate the interactions of cells with other cells. Recent studies indicate that, although constituent protein domains of numerous components of the genetic toolkit of the multicellular body plan of Metazoa were present in the unicellular ancestor of animals, the repertoire of multidomain proteins that are indispensable for the arrangement of distinct body parts in a reproducible manner evolved only in Metazoa. We have shown that the majority of the multidomain proteins involved in cell-cell and cell-matrix interactions of Metazoa have been assembled by exon shuffling, but there is no evidence for a similar role of exon shuffling in the evolution of proteins of metazoan transcription factor modules.
View Article and Find Full Text PDFA major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution.
View Article and Find Full Text PDFThe conserved B-subunit of succinate dehydrogenase (SDH) participates in the tricarboxylic acid cycle (TCA) cycle and mitochondrial electron transport. The Arg230His mutation in SDHB causes heritable pheochromocytoma/paraganglioma (PPGL). In , we generated an PPGL model (SDHB-1 Arg244His; equivalent to human Arg230His), which manifests delayed development, shortened lifespan, attenuated ATP production and reduced mitochondrial number.
View Article and Find Full Text PDFWnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways.
View Article and Find Full Text PDFᅟ: Animals are known to have higher rates of exon skipping than other eukaryotes. In a recent study, Grau-Bové et al. (Genome Biology 19:135, 2018) have used RNA-seq data across 65 eukaryotic species to investigate when and how this high prevalence of exon skipping evolved.
View Article and Find Full Text PDFLancelets, extant representatives of basal chordates, are prototypic examples of evolutionary stasis; they preserved a morphology and body-plan most similar to the fossil chordates from the early Cambrian. Such a low level of morphological evolution is in harmony with a low rate of amino acid substitution; cephalochordate proteins were shown to evolve slower than those of the slowest evolving vertebrate, the elephant shark. Surprisingly, a study comparing the predicted proteomes of Chinese amphioxus, and the Florida amphioxus, has led to the conclusion that the rate of creation of novel domain combinations is orders of magnitude greater in lancelets than in any other Metazoa, a finding that contradicts the notion that high rates of protein innovation are usually associated with major evolutionary innovations.
View Article and Find Full Text PDFUnlabelled: The NTR domain of WFIKKN1 protein has been shown to have significant affinity for the prodomain regions of promyostatin and latent myostatin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that WFIKKN1 inhibits the release of myostatin from promyostatin and/or latent myostatin. WFIKKN1 was found to have no effect on processing of promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, however, was significantly enhanced in the presence of WFIKKN1 and this enhancer activity was superstimulated by heparin.
View Article and Find Full Text PDFA recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
Correct prediction of the structure of protein-coding genes of higher eukaryotes is a difficult task therefore public sequence databases incorporating predicted sequences are increasingly contaminated with erroneous sequences. The high rate of misprediction has serious consequences since it significantly affects the conclusions that may be drawn from genome-scale sequence analyses.Here we describe the MisPred and FixPred approaches that may help the identification and correction of erroneous sequences.
View Article and Find Full Text PDFWnts have a structure resembling a hand with "thumb" and "index" fingers that grasp the cysteine rich domains of Frizzled receptors at two distinct binding sites. In the present work we show that the WIF domain of Wnt Inhibitory Factor 1 is also bound by Wnts at two sites. Using C-terminal domains of Wnt5a and Wnt7a and arginine-scanning mutagenesis of the WIF domain we demonstrate that, whereas the N-terminal, lipid-modified "thumb" of Wnts interacts with the alkyl-binding site of the WIF domain, the C-terminal domain of Wnts (Wnt-CTD) binds to a surface on the opposite side of the WIF domain.
View Article and Find Full Text PDFRecent studies demonstrated an association between the K153R polymorphism in the myostatin gene with extreme longevity, lower muscle strength and obesity but the molecular basis of these associations has not been clarified. Here, we show that the K153R mutation significantly increases the rate of proteolysis of promyostatin by furin, but has no effect on the activity of the latent complex or the cleavage of the latent complex by bone morphogenetic protein 1 (BMP-1). The increased rate of activation of K153R mutant promyostatin may explain why this polymorphism is associated with obesity, lower muscle strength and extension of lifespan.
View Article and Find Full Text PDFProtein databases are heavily contaminated with erroneous (mispredicted, abnormal and incomplete) sequences and these erroneous data significantly distort the conclusions drawn from genome-scale protein sequence analyses. In our earlier work we described the MisPred resource that serves to identify erroneous sequences; here we present the FixPred computational pipeline that automatically corrects sequences identified by MisPred as erroneous. The current version of the associated FixPred database contains corrected UniProtKB/Swiss-Prot and NCBI/RefSeq sequences from Homo sapiens, Mus musculus, Rattus norvegicus, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Danio rerio, Fugu rubripes, Ciona intestinalis, Branchostoma floridae, Drosophila melanogaster and Caenorhabditis elegans; future releases of the FixPred database will include corrected sequences of additional Metazoan species.
View Article and Find Full Text PDFThe LCCL-domain is a recently defined protein module present in diverse extracellular multidomain proteins. Practically nothing is known about the molecular function of these domains; based on functional features of proteins harboring LCCL-domains it has been suggested that these domains might function as lipopolysaccharide-binding domains. Here we show that the two LCCL-domains of human CRISPLD2 protein, a lipopolysaccharide-binding serum protein involved in defense against endotoxin shock, have higher affinity for the lipid A, the toxic moiety of lipopolysaccharides than for ipopolysaccharide.
View Article and Find Full Text PDFDatabase (Oxford)
October 2013
Correct prediction of the structure of protein-coding genes of higher eukaryotes is still a difficult task; therefore, public databases are heavily contaminated with mispredicted sequences. The high rate of misprediction has serious consequences because it significantly affects the conclusions that may be drawn from genome-scale sequence analyses of eukaryotic genomes. Here we present the MisPred database and computational pipeline that provide efficient means for the identification of erroneous sequences in public databases.
View Article and Find Full Text PDFMyostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases.
View Article and Find Full Text PDFA Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1 was localized by structure-guided arginine-scanning mutagenesis in combination with surface plasmon resonance assays. Our observation that substitution of some residues of WIF resulted in an increased affinity for Wnt5a, but decreased affinity for Wnt3a, suggests that these residues may define the specificity spectrum of WIF for Wnts. These results hold promise for a more specific targeting of Wnt family members with WIF variants in various forms of cancer.
View Article and Find Full Text PDFMutations in COCH have been associated with autosomal dominant nonsyndromic hearing loss (DFNA9) and are frequently accompanied by vestibular hypofunction. Here, we report identification of a novel missense mutation, p.F527C, located in the vWFA2 domain in members of a Korean family with late-onset and progressive hearing loss.
View Article and Find Full Text PDFWFIKKN1 and WFIKKN2 are two closely related multidomain proteins consisting of a WAP (whey acidic protein)-, a follistatin-, an immunoglobulin-, two Kunitz-type protease inhibitor-domains and an NTR domain (netrin domain). Recent experiments have shown that both WFIKKN1 and WFIKKN2 bind myostatin and GDF11 (growth and differentiation factor 11) with high affinity and are potent antagonists of these growth factors. Structure-function studies on WFIKKN proteins have revealed that their interactions with GDF8 and GDF11 are mediated primarily by the follistatin and NTR domains.
View Article and Find Full Text PDFCollagens make up the most abundant component of interstitial extracellular matrices and basement membranes. Collagen remodeling is a crucial process in many normal physiological events and in several pathological conditions. Some collagen subtypes contain specific carbohydrate side chains, the function of which is poorly known.
View Article and Find Full Text PDF