Publications by authors named "Laszlo I Simandi"

The 6-coordinate dioximatomanganese(II) complex [Mn(HL)(CH3OH)]+ (2, where H2L is [HON=C(CH3)C(CH3)=NCH2CH2]2NH), formed by instant solvolysis of [Mn2(HL)2](BPh4)2 (1) in methanol, accelerates the triethylamine (TEA)-catalyzed oxidation of 3,5-di-tert-butylcatechol (H2dtbc) by O2 to the corresponding o-benzoquinone. Significantly, 2 alone has no catalytic effect. The observed rate increase can be explained by the interaction of 2 with the hydroperoxo intermediate HdtbcO2- formed from Hdtbc- and O2 in the TEA-catalyzed oxidation.

View Article and Find Full Text PDF

Dioximato-cobalt(II), -iron(II) and -manganese(II) complexes (1)-(6), acting as functional catecholase and phenoxazinone synthase models, exhibit a deuterium kinetic isotope effect predicted by theory (k4H/k4D < or = 3) in the catalytic oxidative dehydrogenation of 3,5-di-tert-butylcatechol and 2-aminophenol by O2. KIEs in the range of (k4H/k4D approximately 1.79-3.

View Article and Find Full Text PDF

[Fe(Hdmg)(2)(MeIm)(2)](1), referred to as ferroxime(II), is the precursor of a selective catalyst for the oxidative dehydrogenation of 2-aminophenol (Hap) to 2-amino-3H-phenoxazine-3-one (apx) by dioxygen under ambient conditions. The superoxoferroxime(III) species has been detected by ES-MS, and a 4-substituted 2-aminophenoxyl free radical by the ESR technique. The kinetics of the reaction was followed spectrophotometrically and by monitoring dioxygen uptake at constant pressure.

View Article and Find Full Text PDF