Brain signaling of calcineurin (CN) and nuclear factor of activated T-cells (NFAT) transcription factor increases in Alzheimer disease (AD) and is associated with synaptic loss, neurodegeneration, neuroinflammation, amyloid-β (Aβ) production, and cognitive decline. CN/NFAT inhibitors ameliorate these neuropathologies in mouse models of AD. Further, chronic use of tacrolimus in transplant patients reduces risk of AD.
View Article and Find Full Text PDFObjectives: Cell surface glycosylation can influence protein-protein interactions with particular relevance to changes in core fucosylation and terminal sialylation. Glycans are ligands for immune regulatory lectin families like galectins (Gals) or sialic acid immunoglobulin-like lectins (Siglecs). This study delves into the glycan alterations within immune subsets of systemic lupus erythematosus (SLE).
View Article and Find Full Text PDFIntroduction: Systemic autoimmune diseases (SADs) are a significant burden on the healthcare system. Understanding the complexity of the peripheral immunophenotype in SADs may facilitate the differential diagnosis and identification of potential therapeutic targets.
Methods: Single-cell mass cytometric immunophenotyping was performed on peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and therapy-naive patients with rheumatoid arthritis (RA), progressive systemic sclerosis (SSc), and systemic lupus erythematosus (SLE).
Aging dogs serve as a valuable preclinical model for Alzheimer's disease (AD) due to their natural age-related development of β-amyloid (Aβ) plaques, human-like metabolism, and large brains that are ideal for studying structural brain aging trajectories from serial neuroimaging. Here we examined the effects of chronic treatment with the calcineurin inhibitor (CNI) tacrolimus or the nuclear factor of activated T cells (NFAT)-inhibiting compound Q134R on age-related canine brain atrophy from a longitudinal study in middle-aged beagles (36 females, 7 males) undergoing behavioral enrichment. Annual MRI was analyzed using modern, automated techniques for region-of-interest-based and voxel-based volumetric assessments.
View Article and Find Full Text PDFIntroduction: Tobacco smoking generates airway inflammation in chronic obstructive pulmonary disease (COPD), and its involvement in the development of lung cancer is still among the leading causes of early death. Therefore, we aimed to have a better understanding of the disbalance in immunoregulation in chronic inflammatory conditions in smoker subjects with stable COPD (stCOPD), exacerbating COPD (exCOPD), or non-small cell lung cancer (NSCLC).
Methods: Smoker controls without chronic illness were recruited as controls.
Background: Vaccination has proven the potential to control the COVID-19 pandemic worldwide. Although recent evidence suggests a poor humoral response against SARS-CoV-2 in vaccinated hematological disease (HD) patients, data on vaccination in these patients is limited with the comparison of mRNA-based, vector-based or inactivated virus-based vaccines.
Methods: Forty-nine HD patients and 46 healthy controls (HCs) were enrolled who received two-doses complete vaccination with BNT162b2, or AZD1222, or BBIBP-CorV, respectively.
The advent of immunotherapy has revolutionized cancer treatments. However, the application of immune checkpoint inhibitors may entail severe side effects, with the risk of therapeutic resistance. The generation of chimeric antigen receptor (CAR) T-cells or CAR-NK cells requires specialized molecular laboratories, is costly, and is difficult to adapt to the rapidly growing number of cancer patients.
View Article and Find Full Text PDFSkeletal muscle plays a major role in whole-body glucose metabolism. Insulin resistance in skeletal muscle is characterized by decreased insulin-stimulated glucose uptake resulting from impaired intracellular trafficking and decreased glucose transporter 4 (GLUT4) expression. In this study, we illustrated that tilorone, a low-molecular-weight antiviral agent, improves glucose uptake in vitro and in vivo.
View Article and Find Full Text PDFA fast, mild, and efficient catalyst-free approach has been developed for the synthesis of chromonyl-substituted α-aminophosphine oxides by the three-component reaction of 3-formyl-6-methylchromone, primary amines, and secondary phosphine oxides at ambient temperature. Carrying out the reaction with aliphatic amines or aminoalcohols at a higher temperature (80 °C), phosphinoyl-functionalized 3-aminomethylene chromanones were formed instead of the corresponding chromonyl-substituted α-aminophosphine oxides. No reaction occurred when 3-formyl-6-methylchromone and secondary phosphine oxides were reacted with aromatic amines in the absence of any catalyst.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2022
Research with deuterium-depleted water (DDW) in the last two decades proved that the deuterium/hydrogen ratio has a key role in cell cycle regulation and cellular metabolism. The present study aimed to investigate the possible effect of deuterium-depleted yolk (DDyolk) alone and in combination with DDW on cancer growth in two in vivo mouse models. To produce DDyolk, the drinking water of laying hens was replaced with DDW (25 ppm) for 6 weeks, resulting in a 60 ppm D level in dried egg yolk that was used as a deuterium-depleted food additive.
View Article and Find Full Text PDFHere, we describe the synthesis and biologic activity evaluation of 20 novel synthetic marine sponge alkaloid analogues with 2-amino-1H-imidazol (2-AI) core. Cytotoxicity was tested on murine 4T1 breast cancer, A549 human lung cancer, and HL-60 human myeloid leukemia cells by the resazurin assay. A total of 18 of 20 compounds showed cytotoxic effect on the cancer cell lines with different potential.
View Article and Find Full Text PDFVaccination against SARS-CoV-2 to prevent COVID-19 is highly recommended for immunocompromised patients with autoimmune rheumatic and musculoskeletal diseases (aiRMDs). Little is known about the effect of booster vaccination or infection followed by previously completed two-dose vaccination in aiRMDs. We determined neutralizing anti-SARS-CoV-2 antibody levels and applied flow cytometric immunophenotyping to quantify the SARS-CoV-2 reactive B- and T-cell mediated immunity in aiRMDs receiving homologous or heterologous boosters or acquired infection following vaccination.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is one of the world's leading causes of death and life-threatening conditions. Therefore, we review the complex vicious circle of causes responsible for T2DM and risk factors such as the western diet, obesity, genetic predisposition, environmental factors, and SARS-CoV-2 infection. The prevalence and economic burden of T2DM on societal and healthcare systems are dissected.
View Article and Find Full Text PDFBackground: Vaccine-induced immunity is essential for controlling the COVID-19 pandemic. Data on humoral and cellular immunogenicity and safety of different SARS-CoV-2 vaccines in patients with autoimmune rheumatic and musculoskeletal diseases (RMDs) are limited.
Methods: A single center observational study evaluated the immunogenicity and safety of the two-dose regimen of the BBIBP-CorV inactivated, Gam-COVID-Vac and AZD1222 adenovirus-based, and BNT162b2 and mRNA-1273 mRNA-based vaccines in patients with RMDs (n = 89) compared with healthy controls (n = 74).
Based on the recommendation of the International Coalition to Eliminate hepatitis B virus (ICE-HBV), we intend to mimic the spontaneous resolution of HBV infection to achieve a functional cure of chronic hepatitis B virus (HBV) infection. To this end, we propose sequential targeting of the innate and adaptive host immune responses. Long-term suppression of HBV replication and hepatitis B surface antigen (HbsAg) production will be achieved first by inducing a strong innate immune response.
View Article and Find Full Text PDFThe quantitative detection of radiation caused DNA double-strand breaks (DSB) by immunostained γ-H2AX foci using direct stochastic optical reconstruction microscopy (dSTORM) provides a deeper insight into the DNA repair process at nanoscale in a time-dependent manner. Glioblastoma (U251) cells were irradiated with 250 keV X-ray at 0, 2, 5, 8 Gy dose levels. Cell cycle phase distribution and apoptosis of U251 cells upon irradiation was assayed by flow cytometry.
View Article and Find Full Text PDFBackground: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA.
View Article and Find Full Text PDFWe developed a human melanoma model using the HT168-M1 cell line to induce IFN-α2 resistance in vitro (HT168-M1res), which was proven to be maintained in vivo in SCID mice. Comparing the mRNA profile of in vitro cultured HT168-M1res cells to its sensitive counterpart, we found 79 differentially expressed genes (DEGs). We found that only a 13-gene core of the DEGs was stable in vitro and only a 4-gene core was stable in vivo.
View Article and Find Full Text PDFCloning the genes and operons encoding heterologous functions in bacterial hosts is now almost exclusively carried out using plasmid vectors. This has multiple drawbacks, including the need for constant selection and variation in copy numbers. The chromosomal integration of transgenes has always offered a viable alternative; however, to date, it has been of limited use due to its tedious nature and often being limited to a single copy.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET).
Methods: High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT).
Oral squamous cell carcinoma (OSCC) is associated with oral Candida albicans infection, although it is unclear whether the fungus promotes the genesis and progression of OSCC or whether cancer facilitates fungal growth. In this study, we investigated whether C. albicans can potentiate OSCC tumor development and progression.
View Article and Find Full Text PDF